留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于模态分解的动态撞击流反应器流场能量分析

张建伟 李贞宏 董鑫 冯颖

张建伟, 李贞宏, 董鑫, 等. 基于模态分解的动态撞击流反应器流场能量分析[J]. 实验流体力学, doi: 10.11729/syltlx20230119
引用本文: 张建伟, 李贞宏, 董鑫, 等. 基于模态分解的动态撞击流反应器流场能量分析[J]. 实验流体力学, doi: 10.11729/syltlx20230119
ZHANG J W, LI Z H, DONG X, et al. Flow field energy analysis of dynamic impinging stream reactor based on modal decomposition[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230119
Citation: ZHANG J W, LI Z H, DONG X, et al. Flow field energy analysis of dynamic impinging stream reactor based on modal decomposition[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230119

基于模态分解的动态撞击流反应器流场能量分析

doi: 10.11729/syltlx20230119
基金项目: 国家自然科学基金项目(21476141);辽宁省“兴辽英才计划”项目(XLYC1808025);中央引导地方科技发展资金第一批计划项目(2023JH6/100100037)
详细信息
    作者简介:

    张建伟:(1964—),男,满族,辽宁义县人,工学博士,教授,研究生导师。研究方向:多相撞击流流动混合,化工反应器,化工流体力学。E-mail:zhangjianwei@syuct.edu.cn

    通讯作者:

    E-mail:dongxin1106@syuct.edu.cn.

  • 中图分类号: TQ021.4

Flow field energy analysis of dynamic impinging stream reactor based on modal decomposition

  • 摘要: 采用实验和理论分析相结合的方法,对动态撞击流反应器流场内的能量分布规律进行研究。借助TR–PIV(Time-Resolved Particle Image Velocimetry)技术对动态撞击流反应器内部流场进行测量,在不同喷嘴间距与喷嘴内径比值L/d、平均出口速率及出口速率差条件下,考察了反应器内部流场的流动结构和流场能量。将动态撞击流反应器内二维速度场进行本征正交分解,提取出流场不同尺度拟序结构及不同本征模态下的能量特征,流场大尺度相干结构分布于径向射流区和两侧喷嘴上下近壁面处。随着L/d增大,反应器内部流场低阶模态含能量先增大后减小,L/d = 4时,流场能量最高;反应器内部流场低阶模态含能量随平均出口速率和出口速率差增大而增大。在动态出口速度条件下,反应器内部流场能量更高,流场大尺度相干结构更为明显,显著强化了流场内的动量交换,有利于提高混合效果。
  • 图  1  撞击流反应器装置图

    Figure  1.  Device diagram of impinging stream reactor

    图  2  动态撞击流测试系统

    Figure  2.  Dynamic impinging stream test system

    图  3  出口速度绝对值

    Figure  3.  The absolute value of outlet velocity

    图  4  动态撞击流反应器内xOy平面瞬时流场速度矢量图

    Figure  4.  Instantaneous velocity vector diagram of xOy plane in dynamic impinging stream reactor

    图  5  前100阶POD模态累积能量

    Figure  5.  The cumulative energy of the first 100 POD modes

    图  6  不同出口速率差下流场前10阶模态含能量分布

    Figure  6.  The energy distribution of the first 10 modes in the flow field with different outlet velocity differences

    图  7  不同L/d下动态流场前10阶模态累积能量

    Figure  7.  The first 10 modes of the dynamic flow field accumulate energy under different L/d

    图  8  不同平均出口速率下动态流场前10阶模态含能量分布

    Figure  8.  The energy distribution of the first 10 modes of the dynamic flow field at different average outlet rates

    图  9  xOy平面前4阶模态涡量场重构

    Figure  9.  The first 4 modes of the xOy plane are used to reconstruct the vorticity field

    图  10  前4阶模态涡量场分布

    Figure  10.  The first 4 mode vorticity field distribution

    图  11  前4阶模态系数FFT功率谱图

    Figure  11.  PSD for the first 4 mode coefficients

    表  1  实验工况

    Table  1.   Experimental condition setting

    Nozzle d/mm vd/(m·s−1) va/(m·s−1) L/d
    Left, Right 10 0.2, 0.4, 0.6, 0.8, 1.0 1.3, 1.4, 1.5, 1.6, 1.7 3, 4, 5
    下载: 导出CSV

    表  2  前6阶POD模态相对能量贡献率的衰减量

    Table  2.   The attenuation of the relative energy contribution rate of the first 6 POD modes

    Decay of relative
    contribution
    va/(m·s−1)
    1.3 1.4 1.5 1.6 1.7
    (n1 − n2)/n1 27.0% 33.0% 35.0% 39.0% 45.0%
    (n2 − n3)/n1 16.0% 9.7% 19.0% 17.0% 16.0%
    (n3 − n4)/n1 10.0% 14.0% 9.5% 11.0% 8.9%
    (n4 − n5)/n1 5.3% 5.4% 6.3% 6.7% 10.7%
    (n5 − n6)/n1 2.3% 5.3% 2.8% 5.0% 3.0%
    下载: 导出CSV
  • [1] DONG B, QIAN H L, XUE C Y, et al. Controllable synthesis of hierarchical micro/nano structured FePO4 particles under synergistic effects of ultrasound irradiation and impinging stream[J]. Advanced Powder Technology, 2020, 31(10): 4292–4300. doi: 10.1016/j.apt.2020.09.002
    [2] THUWAPANICHAYANAN R, KUMKLAM P, SOPONRONNARIT S, et al. Mathematical model and energy utilization evaluation of a coaxial impinging stream drying system for parboiled paddy[J]. Drying Technology, 2022, 40(1): 158–174. doi: 10.1080/07373937.2020.1775640
    [3] TSAOULIDIS D, ORTEGA E G, ANGELI P. Intensified extraction of uranium(VI) in impinging-jets contactors[J]. Chemical Engineering Journal, 2018, 342: 251–259. doi: 10.1016/j.cej.2018.02.049
    [4] LIAN Z Y, ZHANG Y, WANG X Z. Manufacturing of high quality hydrotalcite by computational fluid dynamics simulation of an impinging jet crystallizer[J]. Ceramics International, 2022, 48(11): 15470–15482. doi: 10.1016/j.ceramint.2022.02.081
    [5] WANG Y, WANG Y, LIU Y X. Fe2 + /heat-coactivated PMS oxidation-absorption system for H2S removal from gas phase[J]. Separation and Purification Technology, 2022, 286: 120458. doi: 10.1016/j.seppur.2022.120458
    [6] ZHANG J W, HE Z Y, SHA X L, et al. Hilbert-Huang transform analysis of the concentration field of a two-layer impinging stream mixer[J]. Chemical Engineering & Technology, 2022, 45(9): 1614–1622. doi: 10.1002/ceat.202200142
    [7] 张建伟, 许仲荟, 董鑫, 等. 双组分层撞击流反应器浓度场混沌分析[J]. 过程工程学报, 2022, 22(6): 802–810. doi: 10.12034/j.issn.1009-606X.221180

    ZHANG J W, XU Z H, DONG X, et al. Chaos analysis of concentration field in two-component layered impinging stream reactor[J]. The Chinese Journal of Process Engineering, 2022, 22(6): 802–810. doi: 10.12034/j.issn.1009-606X.221180
    [8] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539–575. doi: 10.1146/annurev.fl.25.010193.002543
    [9] PASTRANA H, TREVIÑO C, PÉREZ-FLORES F, et al. TR-PIV measurements of turbulent confined impinging twin-jets in crossflow[J]. Experimental Thermal and Fluid Science, 2022, 136: 110667. doi: 10.1016/j.expthermflusci.2022.110667
    [10] TORRES P, GONCALVES N D, FONTE C P, et al. Proper orthogonal decomposition and statistical analysis of 2D confined impinging jets chaotic flow[J]. Chemical Engineering & Technology, 2019, 42(8): 1709–1716. doi: 10.1002/ceat.201900050
    [11] CHEN W H, LIU J J, LI J Y, et al. Assessment of a confined thermal plume by PIV combined with POD analysis[J]. Applied Thermal Engineering, 2021, 188: 116590. doi: 10.1016/j.applthermaleng.2021.116590
    [12] 张建伟, 张学良, 冯颖, 等. 水平对置撞击流的POD分析及混合特性[J]. 过程工程学报, 2016, 16(1): 26–33. doi: 10.12034/j.issn.1009-606X.215319

    ZHANG J W, ZHANG X L, FENG Y, et al. POD analysis and mixing characteristics of impinging streams from two opposite nozzles[J]. The Chinese Journal of Process Engineering, 2016, 16(1): 26–33. doi: 10.12034/j.issn.1009-606X.215319
    [13] LI C, YUE S, LI M. Numerical simulation of the drying characteristics of a high-moisture particle in a dynamic asymmetric impinging stream reactor[J]. Chemical Papers, 2022, 76(1): 41–56. doi: 10.1007/s11696-021-01832-3
    [14] QIU S X, XU P, JIANG Z T, et al. Numerical modeling of pulsed laminar opposed impinging jets[J]. Engineering Applications of Computational Fluid Mechanics, 2012, 6(2): 195–202. doi: 10.1080/19942060.2012.11015414
    [15] 刘雪晴. 动态非对称撞击流反应器流动特性研究[D]. 武汉: 华中科技大学, 2019.

    LIU X Q. Study on flow characteristics of dynamic asymmetric impinging stream reactor[D]. Wuhan: Huazhong University of Science and Technology, 2019.
    [16] SIROVICH L. Turbulence and the dynamics of coherent structures. I. Coherent structures[J]. Quarterly of Applied Mathematics, 1987, 45(3): 561–571. doi: 10.1090/qam/910462
  • 加载中
图(11) / 表(2)
计量
  • 文章访问数:  36
  • HTML全文浏览量:  13
  • PDF下载量:  4
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-14
  • 修回日期:  2023-11-15
  • 录用日期:  2023-11-28
  • 网络出版日期:  2024-02-28

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日