留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

氢与碳氢燃料超声速气膜冷却和减阻规律及其影响机制

韦健飞 米振昊 章思龙 左婧滢 李欣 秦江 鲍文

韦健飞, 米振昊, 章思龙, 等. 氢与碳氢燃料超声速气膜冷却和减阻规律及其影响机制[J]. 实验流体力学, doi: 10.11729/syltlx20230114
引用本文: 韦健飞, 米振昊, 章思龙, 等. 氢与碳氢燃料超声速气膜冷却和减阻规律及其影响机制[J]. 实验流体力学, doi: 10.11729/syltlx20230114
WEI J F, MI Z H, ZHANG S L, et al. Cooling and friction reduction performance and mechanism of supersonic film cooling using hydrogen and hydrocarbon[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230114
Citation: WEI J F, MI Z H, ZHANG S L, et al. Cooling and friction reduction performance and mechanism of supersonic film cooling using hydrogen and hydrocarbon[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230114

氢与碳氢燃料超声速气膜冷却和减阻规律及其影响机制

doi: 10.11729/syltlx20230114
基金项目: 国家自然科学基金项目(52176037)
详细信息
    作者简介:

    韦健飞:(1995—),男,安徽合肥人,博士研究生。研究方向:超燃冲压发动机主动冷却技术,湍流燃烧数值模拟技术。通信地址:黑龙江省哈尔滨市香坊区一匡街2号哈尔滨工业大学科学园知源楼(150001)。E-mail:19b902028@stu.hit.edu.cn

    通讯作者:

    E-mail:zhangsilong@hit.edu.cn

  • 中图分类号: V235.2

Cooling and friction reduction performance and mechanism of supersonic film cooling using hydrogen and hydrocarbon

  • 摘要: 在超燃冲压发动机燃烧室中应用燃料气膜冷却可以有效降低发动机壁面严峻的力热载荷,本文对有望应用于超燃冲压发动机的氢和碳氢燃料气膜进行大涡模拟研究。结果表明氢气膜和碳氢燃料气膜间防热和减阻性能具有显著的差异,该差异来源于燃料气膜与主流之间的混合层中湍流状态的显著不同。氢气膜与主流之间的湍流输运过程远弱于碳氢燃料的情况,从而使得氢气膜在惰性情况下具有极其优异的冷却和减阻性能;但当边界层燃烧发生时,由于剧烈的近壁释热,氢气膜的冷却性能急剧恶化。相反的,当碳氢燃料发生边界层燃烧时,其冷却和减阻性能可以从惰性时较差的水平同时提升至与氢气膜可以进行比较的水平。
  • 图  1  计算域及边界条件

    Figure  1.  Computational domain and boundary conditions

    图  2  Case 1的全域湍动能解析率的统计分布

    Figure  2.  The statistics of the resolved turbulent kinetic energy over the whole domain of case 1

    图  3  各算例垂向瞬时速度分布云图

    Figure  3.  Contours of instantaneous vertical velocity of each case

    图  4  中截面上垂向时均速度分布云图

    Figure  4.  Contours of mean vertical velocity at the middle slice

    图  5  各算例瞬时温度分布云图

    Figure  5.  Contours of instantaneous temperature of each case

    图  6  各算例混合层中湍流相干结构

    Figure  6.  Turbulent coherent structures identified in the mixed layer of eachcase

    图  7  各算例壁面摩擦阻力系数沿程分布

    Figure  7.  The wall friction coefficient distributions of eachcase

    图  8  各算例平均壁温沿程分布

    Figure  8.  The mean wall temperature distributions of eachcase

    图  9  各算例壁面冷却效率脉动方差的沿程分布

    Figure  9.  The variance of fluctuating cooling effectiveness of each case

    图  10  各算例时均湍流动量通量的展向平均分布

    Figure  10.  The contours for mean turbulent momentum flux of each case

    图  11  各算例对流动量通量与湍流动量通量沿$y = 0$的分布曲线

    Figure  11.  The convective and turbulent momentum flux along y = 0 of each case

    图  12  各算例在点(0.05, 0, 0)处湍流动量通量的二维核密度估计

    Figure  12.  The 2-D kernel density estimation of turbulent momentum flux at point (0.05, 0, 0) of each case

    图  13  各算例时均湍流热流通量的展向平均分布

    Figure  13.  The turbulent heat flux distribution at the middles slice of eachcase

    图  14  各算例对流热流通量与湍流热流通量沿$y = 0$的分布曲线

    Figure  14.  The convective and turbulent heat flux along y = 0 of each case

    图  15  各算例在点(0.05, 0, 0)处湍流热流通量的二维核密度估计

    Figure  15.  2-D kernel density estimation of turbulent heat flux at point (0.05, 0, 0) of each case

    表  1  主流和气膜的名义边界条件

    Table  1.   Nominal inlet conditions for mainstream and fuel film.

    Inletp/MPaT/KU/(m·s-1)Ma${Y_{ {{\rm{H}}_2} } }$${Y_{ {{\rm{C}}_{10} }{{\rm{H}}_{22} } } }$${Y_{ {{\rm{O}}_2} } }$${Y_{ {{\rm{N}}_2} } }$
    Mainstream0.16162313741.75000.230.77
    H2 film0.16700200611000
    C10H22 film0.1670020010100
    下载: 导出CSV

    表  2  算例设置

    Table  2.   Cases setup

    Case Fuel Chemistry Label
    1 C10H22 off C10-NR
    2 C10H22 on C10-R
    3 H2 off H2-NR
    4 H2 on H2-R
    下载: 导出CSV
  • [1] DING Y B, YUE X K, CHEN G S, et al. Review of control and guidance technology on hypersonic vehicle[J]. Chinese Journal of Aeronautics, 2022, 35(7): 1–18. doi: 10.1016/j.cja.2021.10.037
    [2] CURRAN E T. Scramjet engines: the first forty years[J]. Journal of Propulsion and Power, 2001, 17(6): 1138–1148. doi: 10.2514/2.5875
    [3] CHOUBEY G, DEVARAJAN Y, HUANG W, et al. Recent advances in cavity-based scramjet engine- a brief review[J]. International Journal of Hydrogen Energy, 2019, 44(26): 13895–13909. doi: 10.1016/j.ijhydene.2019.04.003
    [4] ZHANG S L, LI X, ZUO J Y, et al. Research progress on active thermal protection for hypersonic vehicles[J]. Progress in Aerospace Sciences, 2020, 119: 100646. doi: 10.1016/j.paerosci.2020.100646
    [5] ZHANG J Z, ZHANG S C, WANG C H, et al. Recent advances in film cooling enhancement: a review[J]. Chinese Journal of Aeronautics, 2020, 33(4): 1119–1136. doi: 10.1016/j.cja.2019.12.023
    [6] ZHU Y H, PENG W, XU R N, et al. Review on active thermal protection and its heat transfer for airbreathing hypersonic vehicles[J]. Chinese Journal of Aeronautics, 2018, 31(10): 1929–1953. doi: 10.1016/j.cja.2018.06.011
    [7] HASSAN E, BOLES J, AONO H, et al. Supersonic jet and crossflow interaction: computational modeling[J]. Progress in Aerospace Sciences, 2013, 57: 1–24. doi: 10.1016/j.paerosci.2012.06.002
    [8] NING W, YU P, JIN Z. Research status of active cooling of endothermic hydrocarbon fueled scramjet engine[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2013, 227(11): 1780–1794. doi: 10.1177/0954410012463642
    [9] CHOUBEY G, YUVARAJAN D, HUANG W, et al. Hydrogen fuel in scramjet engines - A brief review[J]. International Journal of Hydrogen Energy, 2020, 45(33): 16799–16815. doi: 10.1016/j.ijhydene.2020.04.086
    [10] XUE R, ZHENG X, YUE L J, et al. Reduction of surface friction drag in scramjet engine by boundary layer combustion[J]. Aerospace Science and Technology, 2021, 115: 106788. doi: 10.1016/j.ast.2021.106788
    [11] ZHANG P, XU J L, YU Y, et al. Effect of adverse pressure gradient on supersonic compressible boundary layer combustion[J]. Aerospace Science and Technology, 2019, 88: 380–394. doi: 10.1016/j.ast.2019.03.013
    [12] GOLDSTEIN R J. Film cooling[M]//Advances in Heat Transfer. Amsterdam: Elsevier, 1971: 321-379. doi: 10.1016/s0065-2717(08)70020-0
    [13] JUHANY K A, HUNT M L, SIVO J M. Influence of injectant Mach number and temperature on supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 1994, 8(1): 59–67. doi: 10.2514/3.501
    [14] SONG C Q, SHEN C B. Effects of lip thickness on the flowfield structures of supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(3): 599–605. doi: 10.2514/1.t5479
    [15] SONG C Q, SHEN C B. Effects of feeding pressures on the flowfield structures of supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 2018, 32(3): 648–658. doi: 10.2514/1.t5322
    [16] SONG C Q, SHEN C B. Effects of feeding Mach numbers on the flowfield structures of supersonic film cooling[J]. Journal of Thermophysics and Heat Transfer, 2019, 33(1): 264–270. doi: 10.2514/1.t5475
    [17] LIN J C, WANG Q C, ZHAO Y X, et al. An experimental investigation on the isoenergetic supersonic cooling films subjected to different ratios of static pressure[J]. Physics of Fluids, 2023, 35(5): 056107. doi: 10.1063/5.0149851
    [18] GOYNE C P, STALKER R J, PAULL A, et al. Hypervelocity skin-friction reduction by boundary-layer combustion of hydrogen[J]. Journal of Spacecraft and Rockets, 2000, 37(6): 740–746. doi: 10.2514/2.3645
    [19] GOYNE C P, STALKER R J, PAULL A. Skin-friction measurements in high-enthalpy hypersonic boundary layers[J]. Journal of Fluid Mechanics, 2003, 485: 1–32. doi: 10.1017/s0022112003003975
    [20] KIRCHHARTZ R M, MEE D J, STALKER R J. Supersonic skin-friction drag with tangential wall slot fuel injection and combustion[J]. AIAA Journal, 2012, 50(2): 313–324. doi: 10.2514/1.j051073
    [21] KONOPKA M, MEINKE M, SCHRÖDER W. Large-eddy simulation of shock-cooling-film interaction at helium and hydrogen injection[J]. Physics of Fluids, 2013, 25(10): 106101. doi: 10.1063/1.4823745
    [22] KELLER M A, KLOKER M J, OLIVIER H. Influence of cooling-gas properties on film-cooling effectiveness in supersonic flow[J]. Journal of Spacecraft and Rockets, 2015, 52(5): 1443–1455. doi: 10.2514/1.a33203
    [23] PUDSEY A S, WHEATLEY V, BOYCE R R. Supersonic boundary-layer combustion via multiporthole injector arrays[J]. AIAA Journal, 2015, 53(10): 2890–2906. doi: 10.2514/1.j053817
    [24] LIU H P, GAO Z X, JIANG C W, et al. Studies of combustion effects on near-wall turbulence in supersonic flows by large eddy simulation[J]. Aerospace Science and Technology, 2020, 107: 106328. doi: 10.1016/j.ast.2020.106328
    [25] BURROWS M C, KURKOV A P. An analytical and experimental study of supersonic combustion of hydrogen in vitiated air stream[J]. AIAA Journal, 1973, 11(9): 1217–1218. doi: 10.2514/3.50564
    [26] WEI J, ZHANG S L, ZUO J Y, et al. Effects of combustion on the near-wall turbulence and performance for supersonic hydrogen film cooling using large eddy simulation[J]. Physics of Fluids, 2023, 35(3): 035112. doi: 10.1063/5.0139355
    [27] ZUO J Y, ZHANG S L, WEI D Y, et al. Effects of combustion on supersonic film cooling using gaseous hydrocarbon fuel as coolant[J]. Aerospace Science and Technology, 2020, 106: 106202. doi: 10.1016/j.ast.2020.106202
    [28] ZUO J Y, ZHANG S L, QIN J, et al. Effects of shock waves interaction on hydrocarbon fueled supersonic film cooling with combustion[J]. Aerospace Science and Technology, 2021, 113: 106693. doi: 10.1016/j.ast.2021.106693
    [29] ZUO J Y, WEI D Y, ZHANG S L, et al. Parametric numerical analysis on the interaction between combustion and hydrocarbon fueled supersonic film cooling[J]. Aerospace Science and Technology, 2021, 111: 106535. doi: 10.1016/j.ast.2021.106535
    [30] WEI J F, ZHANG S L, WANG H Y, et al. Effects of fuel conversion ratio on cooling and drag reduction performance for supersonic film using gaseous hydrocarbon fuel[J]. Applied Thermal Engineering, 2022, 216: 119181. doi: 10.1016/j.applthermaleng.2022.119181
    [31] EKLUND D, STOUFFER S. A numerical and experimental study of a supersonic combustor employing sweep ramp fuel injectors[C]//The Proceedings of the 30th Joint Propulsion Conference and Exhibit. 1994. doi: 10.2514/6.1994-2819
    [32] CHANG Y C, JIA M, LIU Y D, et al. Development of a new skeletal mechanism for n-decane oxidation under engine-relevant conditions based on a decoupling methodology[J]. Combustion and Flame, 2013, 160(8): 1315–1332. doi: 10.1016/j.combustflame.2013.02.017
    [33] CONTINO F, JEANMART H, LUCCHINI T, et al. Coupling of in situ adaptive tabulation and dynamic adaptive chemistry: an effective method for solving combustion in engine simulations[J]. Proceedings of the Combustion Institute, 2011, 33(2): 3057–3064. doi: 10.1016/j.proci.2010.08.002
    [34] PIROZZOLI S. Generalized conservative approximations of split convective derivative operators[J]. Journal of Computational Physics, 2010, 229(19): 7180–7190. doi: 10.1016/j.jcp.2010.06.006
    [35] JARRIN N. Synthetic inflow boundary conditions for the numerical simulation of turbulence[D]. Manchester: The university of Manchester, 2008.
    [36] POPE S B. Turbulent flows[M]. Cambridge: Cambridge University Press, 2000.
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  89
  • HTML全文浏览量:  37
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2023-09-23
  • 录用日期:  2023-10-07
  • 网络出版日期:  2023-11-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日