留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

脉冲喷注对超燃冲压发动机煤油燃料混合及燃烧性能的影响

刘国雄 李朗 贾彬

刘国雄, 李朗, 贾彬. 脉冲喷注对超燃冲压发动机煤油燃料混合及燃烧性能的影响[J]. 实验流体力学, doi: 10.11729/syltlx20230113
引用本文: 刘国雄, 李朗, 贾彬. 脉冲喷注对超燃冲压发动机煤油燃料混合及燃烧性能的影响[J]. 实验流体力学, doi: 10.11729/syltlx20230113
LIU G X, LI L, JIA B. Numerical simulation of mixing and combustion performance of pulsed injection in a kerosene-fueled scramjet[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230113
Citation: LIU G X, LI L, JIA B. Numerical simulation of mixing and combustion performance of pulsed injection in a kerosene-fueled scramjet[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230113

脉冲喷注对超燃冲压发动机煤油燃料混合及燃烧性能的影响

doi: 10.11729/syltlx20230113
基金项目: 国防科工局实验室稳定支持项目(WDZC6142703202205)
详细信息
    作者简介:

    刘国雄:(1999—),男,四川宜宾人,硕士研究生。研究方向:超燃冲压发动机技术。通信地址:四川省绵阳市涪城区青龙大道中段59号西南科技大学土木工程与建筑学院(621010)。E-mail:877340303@qq.com

    通讯作者:

    E-mail:lilang0211@swust.edu.cn.

  • 中图分类号: V233.1

Numerical simulation of mixing and combustion performance of pulsed injection in a kerosene-fueled scramjet

  • 摘要: 为研究脉冲喷注对超燃冲压发动机气态煤油混合及燃烧性能的影响,采用二维雷诺平均方程及两方程剪切应力输运模型进行数值模拟,探究了以双凹腔超燃冲压发动机模型在入口马赫数2.5、总压1.75 MPa、总温1350 K条件下的流场结构。对比分析了定常喷注和脉冲喷注下煤油与空气的混合和燃烧性能。研究结果表明:数值模拟纹影图与试验结果吻合较好,出现对应纹影仅先于试验0.2 ms,占一个流场振荡周期(6.9 ms)的2.89%。研究发现:在脉冲喷注工况下,回流区在流场振荡周期内能持续更长时间,延长了燃料在凹腔内的滞留时间;未发现脉冲喷注对总压损失有显著贡献,但脉冲喷注工况下温度与压力分布均匀,不会出现热力学喉道。
  • 图  1  超燃冲压发动机二维模型

    Figure  1.  Two-dimensional model of scramjet engine

    图  2  燃烧室网格

    Figure  2.  Combustion chamber grid

    图  3  入口质量流量示意图

    Figure  3.  Inlet mass flow diagram

    图  4  试验与数值模拟冷流流场对比

    Figure  4.  Comparison of experimental and simulated cold flow fields upstream

    图  5  试验及数值模拟上壁面压力图

    Figure  5.  Experimental and numerical simulation of upper wall pressure

    图  6  燃烧室上游流线和压力等值线图

    Figure  6.  Streamlines and pressure isogram of the combustion chamber

    图  7  定常喷注煤油的摩尔分数分布及流线图

    Figure  7.  Steady injection kerosene mole fraction and streamline diagram

    图  8  脉冲喷注煤油的摩尔分数分布及流线图

    Figure  8.  Pulsed injection kerosene mole fraction and streamline diagram

    图  9  二氧化碳与温度云图

    Figure  9.  Carbon dioxide and temperature contour

    图  10  马赫云图

    Figure  10.  Mach contour

    图  11  总压恢复系数

    Figure  11.  Total pressure recovery coefficient

    图  12  上壁面压力

    Figure  12.  Upper wall pressure diagram

    表  1  边界条件

    Table  1.   Boundary condition

    pt/kPa p0/Pa T/K
    Inlet 1750 102423 1350
    Jet 1500 79239 300
    下载: 导出CSV
  • [1] URZAY J. Supersonic combustion in air-breathing propulsion systems for hypersonic flight[J]. Annual Review of Fluid Mechanics, 2018, 50: 593–627. doi: 10.1146/annurev-fluid-122316-045217
    [2] LIU Q L, BACCARELLA D, LEE T H. Review of combustion stabilization for hypersonic airbreathing propulsion[J]. Progress in Aerospace Sciences, 2020, 119: 100636. doi: 10.1016/j.paerosci.2020.100636
    [3] ZUO Q R, YU H L, DAI J. Effects of cavity-induced mixing enhancement under oblique shock wave interference: numerical study[J]. International Journal of Hydrogen Energy, 2021, 46(72): 35706–35717. doi: 10.1016/j.ijhydene.2021.08.131
    [4] BARZEGAR GERDROODBARY M, RAHIMI TAKAMI M, HEIDARI H R, et al. Comparison of the single/multi transverse jets under the influence of shock wave in supersonic crossflow[J]. Acta Astronautica, 2016, 123: 283–291. doi: 10.1016/j.actaastro.2016.03.031
    [5] SHARMA V, ESWARAN V, CHAKRABORTY D. Effect of location of a transverse sonic jet on shock augmented mixing in a SCRAMJET engine[J]. Aerospace Science and Technology, 2020, 96: 105535. doi: 10.1016/j.ast.2019.105535
    [6] MAI T, SAKIMITSU Y, NAKAMURA H, et al. Effect of the incident shock wave interacting with transversal jet flow on the mixing and combustion[J]. Proceedings of the Combustion Institute, 2011, 33(2): 2335–2342. doi: 10.1016/j.proci.2010.07.056
    [7] HUANG W, WU H, DU Z B, et al. Design exploration on the mixing augmentation induced by the oblique shock wave and a novel step in a supersonic flow[J]. Acta Astronautica, 2021, 180: 622–629. doi: 10.1016/j.actaastro.2020.12.058
    [8] TRETYAKOV P K. Organization of a pulsed mode of combustion in scramjets[J]. Combustion, Explosion, and Shock Waves, 2012, 48(6): 677–682. doi: 10.1134/S0010508212060020
    [9] SHI H T, WANG G L, LUO X S, et al. Large-eddy simulation of a pulsed jet into a supersonic crossflow[J]. Computers & Fluids, 2016, 140: 320–333. doi: 10.1016/j.compfluid.2016.10.009
    [10] CHEN S, ZHAO D. RANS investigation of the effect of pulsed fuel injection on scramjet HyShot II engine[J]. Aerospace Science and Technology, 2019, 84: 182–192. doi: 10.1016/j.ast.2018.10.022
    [11] DU Z B, HUANG W, YAN L, et al. Reynolds-average Navier-Stokes study of steady and pulsed gaseous jets with different periods for the shock-induced combustion ramjet engine[J]. Physics of Fluids, 2019, 31(5): 055107. doi: 10.1063/1.5097238
    [12] DU Z B, HUANG W, YAN L, et al. RANS study of steady and pulsed gaseous jets into a supersonic crossflow[J]. International Journal of Heat and Mass Transfer, 2019, 136: 157–169. doi: 10.1016/j.ijheatmasstransfer.2019.02.103
    [13] MILLER W A, MEDWELL P R, DOOLAN C J, et al. Numerical investigation of a pulsed reaction control jet in hypersonic crossflow[J]. Physics of Fluids, 2018, 30(10): 106108. doi: 10.1063/1.5048544
    [14] DAI J, ZUO Q R. Numerical investigation on mixing enhancement of the cavity with pulsed jets under oblique shock wave interference[J]. Aerospace Science and Technology, 2022, 123: 107454. doi: 10.1016/j.ast.2022.107454
    [15] ZHAO M J, LI Q L, YE T H. Investigation of an optimal pulsed jet mixing and combustion in supersonic crossflow[J]. Combustion and Flame, 2021, 227: 186–201. doi: 10.1016/j.combustflame.2021.01.005
    [16] WILLIAMS N J, MOELLER T M, THOMPSON R J. Numerical simulations of high frequency transverse pulsed jet injection into a supersonic crossflow[J]. Aerospace Science and Technology, 2020, 103: 105908. doi: 10.1016/j.ast.2020.105908
    [17] HE Z, TIAN Y, LE J L, et al. Effects of pulsed injection on ignition delay and combustion performance in a hydrogen-fuel scramjet combustor[J]. Acta Astronautica, 2022, 193: 152–162. doi: 10.1016/j.actaastro.2022.01.012
    [18] TIAN Y, GUO M M, RAN W, et al. Experimental investigation of effects of pulsed injection on flow structure and flame development in a kerosene-fueled scramjet with pilot hydrogen[J]. Physics of Fluids, 2022, 34(5): 055109. doi: 10.1063/5.0094932
    [19] BARZEGAR GERDROODBARY M, JAHANIAN O, MOKHTARI M. Influence of the angle of incident shock wave on mixing of transverse hydrogen micro-jets in supersonic crossflow[J]. International Journal of Hydrogen Energy, 2015, 40(30): 9590–9601. doi: 10.1016/j.ijhydene.2015.04.107
    [20] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149
    [21] HUANG S Z, CHEN Q. Numerical evaluation of shock wave effects on turbulent mixing layers in a scramjet combustor[J]. Case Studies in Thermal Engineering, 2021, 25: 100893. doi: 10.1016/j.csite.2021.100893
    [22] HUANG W, WANG Z G, WU J P, et al. Numerical prediction on the interaction between the incident shock wave and the transverse slot injection in supersonic flows[J]. Aerospace Science and Technology, 2013, 28(1): 91–99. doi: 10.1016/j.ast.2012.10.007
    [23] BARZEGAR GERDROODBARY M, GANJI D D, AMINI Y. Numerical study of shock wave interaction on transverse jets through multiport injector arrays in supersonic crossflow[J]. Acta Astronautica, 2015, 115: 422–433. doi: 10.1016/j.actaastro.2015.06.002
    [24] DU Z B, SHEN C B, HUANG W, et al. Mixing augmentation induced by the combination of the oblique shock wave and secondary recirculation jet in a supersonic crossflow[J]. International Journal of Hydrogen Energy, 2022, 47(11): 7458–7477. doi: 10.1016/j.ijhydene.2021.12.069
    [25] LI Z X, DINH MANH T, BARZEGAR GERDROODBARY M, et al. The influence of the wedge shock generator on the vortex structure within the trapezoidal cavity at supersonic flow[J]. Aerospace Science and Technology, 2020, 98: 105695. doi: 10.1016/j.ast.2020.105695
    [26] HUANG W, LIU W D, LI S B, et al. Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows[J]. Acta Astronautica, 2012, 73: 1–9. doi: 10.1016/j.actaastro.2011.12.003
    [27] ZHA Z M, YE Z Y, HONG Z, et al. Effects of unsteady oblique shock wave on mixing efficiency of two-dimensional supersonic mixing layer[J]. Acta Astronautica, 2021, 178: 60–71. doi: 10.1016/j.actaastro.2020.07.028
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  73
  • HTML全文浏览量:  43
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-09-06
  • 修回日期:  2023-09-26
  • 录用日期:  2023-10-07
  • 网络出版日期:  2023-11-28

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日