留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

液相下固、液、气纳米软物质的形貌及力学性能研究

许懿 程宇竹 王川 付帅 靳亚康 陈龙泉

许懿, 程宇竹, 王川, 等. 液相下固、液、气纳米软物质的形貌及力学性能研究[J]. 实验流体力学, doi: 10.11729/syltlx20230095
引用本文: 许懿, 程宇竹, 王川, 等. 液相下固、液、气纳米软物质的形貌及力学性能研究[J]. 实验流体力学, doi: 10.11729/syltlx20230095
XU Y, CHENG Y Z, WANG C, et al. Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230095
Citation: XU Y, CHENG Y Z, WANG C, et al. Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230095

液相下固、液、气纳米软物质的形貌及力学性能研究

doi: 10.11729/syltlx20230095
基金项目: 国家自然科学基金项目(11772271,12272085,12202096)
详细信息
    作者简介:

    许懿:(1992—),男,河南商丘人,博士研究生。研究方向:微纳米力学,弹性力学。通信地址:四川省成都市郫都区西源大道2006号电子科技大学清水河校区物理学院软物质与界面流体实验室(611730)。E-mail:xuyi19@std.uestc.edu.cn

    通讯作者:

    E-mail:lqchen@uestc.edu.cn.

  • 中图分类号: O343.2

Study on the morphology and mechanical properties of solid, liquid and gas nanoscopic soft matter in liquid phase

  • 摘要: 为保持稳定,纳米软物质在液相环境中通常呈球冠状,这对液相下不同纳米软物质的形貌表征和辨识具有一定挑战性。本文利用原子力显微镜(AFM)对水下微纳米水泡、聚合物液滴和表面气泡进行高分辨成像,通过改变扫描力来研究分析它们的形貌变化及形态特征;通过纳米压痕测试,分析了探针与固、液、气界面的相互作用,并获得了它们的力学特性。研究结果表明:在0.5 nN扫描力下,水泡、液滴和气泡的形貌均呈球冠状;在大扫描力(5.0 nN)下,水泡形貌不变,液滴体积减小,气泡消失。在3.0 nN载荷的压痕实验中,顶点处的力–距离曲线表明三者均发生了弹性形变。探针脱离液滴需克服较大黏附力,气泡则呈现两段式弹性变形。此外,由于锚定效应的影响,球冠边缘位置抵抗变形的能力更强。聚甲基丙烯酸甲酯(PMMA)纳米膜的模量(约为3.38 GPa)和水泡弹性变形时的载荷无关。小尺寸PDMS液滴在水下的界面张力约为37.3 mN/m,表面气泡的气–液界面张力约为32.5 mN/m。
  • 图  1  水下纳米软物质的AFM形貌和力学测量

    Figure  1.  AFM morphology and mechanical measurements of suba-queous nanoscopic soft materials

    图  2  水泡、液滴和表面气泡的接触半径与接触角的关系

    Figure  2.  Plot of the contact angle as a function of the contact radius of blister, droplet and surface bubble

    图  3  水泡、液滴和表面气泡顶点位置的力–距离曲线

    Figure  3.  Force-distance curves acquired around the apex of blister, droplet and surface bubble

    图  4  水泡、液滴和表面气泡的力–距离曲线

    Figure  4.  Force-distance curves of blister, droplet and surface bubble

    图  5  水泡、液滴和表面气泡沿中心轴线处的刚度

    Figure  5.  The stiffnesses of blister, droplet and surface bubble at the central axis

    图  6  水泡刚度与载荷的关系

    Figure  6.  Plot of the stiffness of the blister as a function of the indenting force

    图  7  水泡弹性变形时的载荷和PMMA薄膜杨氏模量的关系

    Figure  7.  Plot of Young's modulus of PMMA film as a function of the loading during elastic deformation of the blister

    图  8  液–液界面张力与曲率半径的关系

    Figure  8.  The relationship between liquid interface tension and curvature radius

    图  9  气–液界面张力与曲率半径的关系

    Figure  9.  The relationship between liquid interface, gas-liquid interface tension and curvature radius

    表  1  0.5 ~ 5.0 nN 扫描力下的水泡形貌特征

    Table  1.   Morphological characteristics of blister under the scanning force of 0.5 ~ 5.0 nN

    扫描力FS /nN 接触半径a/${\text{μ}} $m 高度H/${\text{μ}} $m 曲率半径R/${\text{μ}} $m 接触角θ/(° ) 体积V/${\text{μ}} $m3
    0.5 0.69 0.330 0.88 51 0.27
    1.0 0.69 0.320 0.90 50 0.26
    3.0 0.70 0.330 0.90 51 0.28
    5.0 0.69 0.320 0.91 50 0.26
    下载: 导出CSV

    表  2  0.5 ~ 5.0 nN 扫描力下的液滴形貌特征

    Table  2.   Morphological characteristics of droplet under the scanning force of 0.5 ~ 5.0 nN

    扫描力FS/nN 接触半径a/${\text{μ}} $m 高度H/${\text{μ}} $m 曲率半径R/${\text{μ}} $m 接触角θ/(° ) 体积V/${\text{μ}} $m3
    0.5 0.53 0.120 1.2 26 0.053
    1.0 0.51 0.120 1.1 27 0.052
    3.0 0.43 0.096 1.0 25 0.029
    5.0 0.43 0.096 1.0 25 0.029
    下载: 导出CSV

    表  3  0.5 ~ 5.0 nN 扫描力下的表面气泡形貌特征

    Table  3.   Morphological characteristics of surface bubble under the scanning force of 0.5 ~ 5.0 nN

    扫描力FS/nN接触半径a/${\text{μ}} $m高度H/${\text{μ}} $m曲率半径R/${\text{μ}} $m接触角θ/(° )体积V/${\text{μ}} $m3
    0.50.320.0431.23150.0070
    1.00.320.0371.40130.0060
    3.00.190.0161.08100.0009
    5.0
    下载: 导出CSV
  • [1] LUKE G P, HANNAH A S, EMELIANOV S Y. Super-resolution ultrasound imaging in vivo with transient laser-activated nanodroplets[J]. Nano Letters, 2016, 16(4): 2556–2559. doi: 10.1021/acs.nanolett.6b00108
    [2] TEMESGEN T, BUI T T, HAN M, et al. Micro and nanobubble technologies as a new horizon for water-treatment techniques: a review[J]. Advances in Colloid and Interface Science, 2017, 246: 40–51. doi: 10.1016/j.cis.2017.06.011
    [3] CALGAROTO S, AZEVEDO A, RUBIO J. Flotation of quartz particles assisted by nanobubbles[J]. International Journal of Mineral Processing, 2015, 137: 64–70. doi: 10.1016/j.minpro.2015.02.010
    [4] TORCHILIN V P. Multifunctional, stimuli-sensitive nanoparticulate systems for drug delivery[J]. Nature Reviews Drug Discovery, 2014, 13(11): 813–827. doi: 10.1038/nrd4333
    [5] TADROS T, IZQUIERDO P, ESQUENA J, et al. Formation and stability of nano-emulsions[J]. Advances in Colloid and Interface Science, 2004, 108-109: 303–318. doi: 10.1016/j.cis.2003.10.023
    [6] 赵亚溥. 纳米与介观力学[M]. 北京: 科学出版社, 2015: 483-488. .
    [7] GUAN D S, CHARLAIX E, TONG P E. State and rate dependent contact line dynamics over an aging soft surface[J]. Physical Review Letters, 2020, 124(18): 188003. doi: 10.1103/physrevlett.124.188003
    [8] ZHANG X H, ZHANG X D, SUN J L, et al. Detection of novel gaseous states at the highly oriented pyrolytic graphite–water interface[J]. Langmuir, 2007, 23(4): 1778–1783. doi: 10.1021/la062278w
    [9] ZHAO B Y, SONG Y, WANG S, et al. Mechanical mapping of nanobubbles by PeakForce atomic force microscopy[J]. Soft Matter, 2013, 9(37): 8837–8843. doi: 10.1039/C3SM50942G
    [10] AN H J, TAN B H, OHL C D. Distinguishing nanobubbles from nanodroplets with AFM: the influence of vertical and lateral imaging forces[J]. Langmuir, 2016, 32(48): 12710–12715. doi: 10.1021/acs.langmuir.6b02519
    [11] JIA Y Q, ZHAO B Y, ABOUEI MEHRIZI A, et al. Identification of surface nanobubbles and resolving their size-dependent stiffness[J]. Science China Physics, Mechanics & Astronomy, 2020, 63(9): 1–11. doi: 10.1007/s11433-020-1538-0
    [12] LI D Y, LIU Y L, QI L T, et al. Properties of blisters formed on polymer films and differentiating them from nanobubbles/nanodrops[J]. Langmuir, 2019, 35(8): 3005–3012. doi: 10.1021/acs.langmuir.8b03965
    [13] XU Y, JIA Y Q, ANTONINI C, et al. Interfacial nanoblisters formed in water serving as freestanding platforms for measuring elastic moduli of polymeric nanofilms[J]. Nano Letters, 2023, 23(7): 3078–3084. doi: 10.1021/acs.nanolett.2c05070
    [14] PAPALÉO R M, LEAL R, CARREIRA W H, et al. Relaxation times of nanoscale deformations on the surface of a polymer thin film near and below the glass transition[J]. Physical Review B, 2006, 74(9): 094203. doi: 10.1103/physrevb.74.094203
    [15] LIU G Q, HIRTZ M, FUCHS H, et al. Development of dip-pen nanolithography (DPN) and its derivatives[J]. Small, 2019, 15(21): 1900564. doi: 10.1002/smll.201900564
    [16] ZHOU L M, WANG S, QIU J, et al. Interfacial nanobubbles produced by long-time preserved cold water[J]. Chinese Physics B, 2017, 26(10): 106803. doi: 10.1088/1674-1056/26/10/106803
    [17] BUTT H J, JASCHKE M. Calculation of thermal noise in atomic force microscopy[J]. Nanotechnology, 1995, 6(1): 1–7. doi: 10.1088/0957-4484/6/1/001
    [18] EFFENDY S, ZHOU T T, EICHMAN H, et al. Blistering failure of elastic coatings with applications to corrosion resistance[J]. Soft Matter, 2021, 17(41): 9480–9498. doi: 10.1039/d1sm00986a
    [19] LOHSE D, ZHANG X H. Pinning and gas oversaturation imply stable single surface nanobubbles[J]. Physical Review E, 2015, 91(3): 031003. doi: 10.1103/physreve.91.031003
    [20] ZITZLER L, HERMINGHAUS S, MUGELE F. Capillary forces in tapping mode atomic force microscopy[J]. Physical Review B, 2002, 66(15): 155436. doi: 10.1103/physrevb.66.155436
    [21] KIM K S, LIN Z Q, SHROTRIYA P, et al. Iterative control approach to high-speed force-distance curve measurement using AFM: time-dependent response of PDMS example[J]. Ultramicroscopy, 2008, 108(9): 911–920. doi: 10.1016/j.ultramic.2008.03.001
    [22] BEAGLEHOLE D, CHRISTENSON H K. Vapor adsorption on mica and silicon: entropy effects, layering, and surface forces[J]. The Journal of Physical Chemistry, 1992, 96(8): 3395–3403. doi: 10.1021/j100187a040
    [23] STAFFORD C M, VOGT B D, HARRISON C, et al. Elastic moduli of ultrathin amorphous polymer films[J]. Macromolecules, 2006, 39(15): 5095–5099. doi: 10.1021/ma060790i
    [24] CHANG J, TOGA K B, PAULSEN J D, et al. Thickness dependence of the young’s modulus of polymer thin films[J]. Macromolecules, 2018, 51(17): 6764–6770. doi: 10.1021/acs.macromol.8b00602
    [25] FREEDMAN M A, ROSENBAUM A W, SIBENER S J. Atomic scattering as a probe of polymer surface and thin film dynamics[J]. Physical Review B, 2007, 75(11): 113410. doi: 10.1103/physrevb.75.113410
    [26] SUDERSAN P, MÜLLER M, HORMOZI M, et al. Method to measure surface tension of microdroplets using standard AFM cantilever tips[J]. Langmuir, 2023, 39(30): 10367–10374. doi: 10.1021/acs.langmuir.3c00613
    [27] ROCHERON M, CURTIL C, KLEIN H R. FM-AFM with a hanging fiber probe for the study of liquid-liquid interfaces[J]. Langmuir, 2022, 38(21): 6592–6601. doi: 10.1021/acs.langmuir.2c00450
    [28] MOODY M P, ATTARD P. Curvature-dependent surface tension of a growing droplet[J]. Physical Review Letters, 2003, 91(5): 056104. doi: 10.1103/physrevlett.91.056104
    [29] GUO Z J, WANG X, ZHANG X R. Stability of surface nanobubbles without contact line pinning[J]. Langmuir, 2019: acs. langmuir. 9b00772. doi: 10.1021/acs.langmuir.9b00772
  • 加载中
图(9) / 表(3)
计量
  • 文章访问数:  105
  • HTML全文浏览量:  72
  • PDF下载量:  13
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-26
  • 修回日期:  2023-08-25
  • 录用日期:  2023-09-06
  • 网络出版日期:  2023-11-13

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日