留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

柔性翼挥拍运动惯性力及气动力实验测量与分析

林伟腾 朱博闻 余永亮

林伟腾, 朱博闻, 余永亮. 柔性翼挥拍运动惯性力及气动力实验测量与分析[J]. 实验流体力学, doi: 10.11729/syltlx20230089
引用本文: 林伟腾, 朱博闻, 余永亮. 柔性翼挥拍运动惯性力及气动力实验测量与分析[J]. 实验流体力学, doi: 10.11729/syltlx20230089
LIN W T, ZHU B W, YU Y L. Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230089
Citation: LIN W T, ZHU B W, YU Y L. Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230089

柔性翼挥拍运动惯性力及气动力实验测量与分析

doi: 10.11729/syltlx20230089
基金项目: 国家自然科学基金项目(12172355,11672291);中央高校基本科研业务费专项(E1E42201)
详细信息
    作者简介:

    林伟腾:(1997—),男,广东茂名人,硕士研究生。研究方向:生物运动力学。通信地址:北京市怀柔区怀北镇中国科学院大学雁栖湖校区西区学园二247实验室(100049)。E-mail:linweiteng20@mails.ucas.ac.cn

    通讯作者:

    E-mail:ylyu@ucas.ac.cn.

  • 中图分类号: O35

Experimental measurement and analysis of inertia force and aerodynamic force in flapping motion of flexible wing

  • 摘要: 在蝙蝠扑翼运动过程中,惯性力和气动力往往同时存在。为研究蝙蝠柔性膜翼挥拍运动的气动特性,需从耦合的扑翼惯性力和气动力中分离出气动力。本文搭建了基于多目视觉的拍摄平台,以获取不同属性的柔性膜翼挥拍运动图像,使用多目视觉算法重构了柔性膜翼变形,从变形中计算惯性力。通过六维力传感器获得了柔性膜翼实时受力,从中消除惯性力后得到气动力,并分析了惯性力与气动力之间的关系。经短梁标准模型验证,采用该方法重构的最大变形误差约为2.36%。研究结果表明:大柔性膜翼在挥拍运动中显著变形,变形程度与惯性力和气动力相关;随着膜翼厚度增大,惯性力和气动力都有不同程度提高。
  • 图  1  实验平台示意图

    Figure  1.  Sketch map of experimental platform

    图  2  挥拍机构示意图

    Figure  2.  Schematic Diagram of Flapping Mechanism

    图  3  一个周期内的挥拍角度

    Figure  3.  The flapping angle in one cycle

    图  4  带有标记点的矩形翼

    Figure  4.  Rectangular wing with marked points

    图  5  坐标系变换关系

    Figure  5.  The relation of coordinate system transformation

    图  6  以BatTracker程序计算标记点的三维坐标

    Figure  6.  The BatTracker program calculates the three-dimensional coordinates of the marked points

    图  7  用于方法验证的标准模型

    Figure  7.  Standard model for method validation

    图  8  惯性力实验值与理论值对比

    Figure  8.  Comparison of experimental and theoretical values of inertia forces

    图  9  ATI力传感器数据滤波前后对比

    Figure  9.  Comparison of ATI force sensor data before and after filtering

    图  10  无膜翼的运动重建结果

    Figure  10.  Kinematic reconstruction of membraneless wing

    图  11  尼龙膜翼的运动重建结果

    Figure  11.  Kinematic reconstruction of nylon membrane wing

    图  12  尼龙膜翼的惯性力

    Figure  12.  Inertia force of nylon membrane wing

    图  13  中心展长处的翼弦绕前缘的扭转角

    Figure  13.  Twist angle of the wing chord around the leading edge at the center of the span

    图  14  尼龙膜翼最大弓形变形及其展向位置

    Figure  14.  Maximum camber and its spanwise location of nylon membrane wing

    图  15  尼龙膜翼的惯性力和气动力

    Figure  15.  Inertia and aerodynamic forces of nylon membrane wings

    图  16  乳胶膜翼运动重建结果

    Figure  16.  Kinematic reconstruction of latex membrane wing

    图  17  乳胶膜翼的惯性力

    Figure  17.  Inertia force of latex membrane wing

    图  18  乳胶膜翼的最大弓形变形及其展向位置

    Figure  18.  Maximum camber and its spanwise location of latex membrane wing

    图  19  乳胶膜翼的惯性力和气动力

    Figure  19.  Inertia and aerodynamic forces of latex membrane wings

    图  20  不同厚度柔性翼的惯性力

    Figure  20.  Inertia forces of flexible wings with different thicknesses

    图  21  不同厚度柔性翼的气动力

    Figure  21.  Aerodynamic forces of flexible wings with different thicknesses

    图  22  不同厚度柔性翼的挥拍运动位移幅值扩大变形

    Figure  22.  Flapping amplitude expansion of flexible wings with different thicknesses

    表  1  模型翼膜和骨架的材料参数

    Table  1.   Material parameters of the model wing’s membrane and skeleton

    材料 密度
    ρ/(kg·m−3
    弹性模量
    E/MPa
    厚度
    h/mm
    弯曲模量
    Eb /MPa
    PLA + 1300 4000 5 1913
    尼龙 629 2500 0.07
    乳胶 1520 0.66 0.30
    下载: 导出CSV

    表  2  力传感器量程和分辨率

    Table  2.   Range and resolution of the force sensor

    参数量程分辨率
    Fx, Fy25 N1/160 N
    Fz35 N1/160 N
    Tx, Ty, Tz250 N·mm1/32 N·mm
    下载: 导出CSV

    表  3  静态测量误差

    Table  3.   Static measuring error

    展长/mm弦长/mm
    1182.8978.72
    2182.5278.99
    3185.7379.61
    4184.6679.55
    5184.3079.68
    平均值184.0279.31
    相对误差2.23%0.86%
    下载: 导出CSV

    表  4  ATI力传感器测量误差

    Table  4.   Force sensor measurement error

    砝码质量/g重量真实值/N重量测量值/N误差值/N相对误差
    50.0490.0470.0024.08%
    100.0980.0970.0011.02%
    500.4900.4910.0010.20%
    1000.9800.9820.0020.20%
    下载: 导出CSV

    表  5  不同厚度翼膜的弯曲刚度

    Table  5.   Flexural stiffness of membranes with different thicknesses

    翼膜厚度h/mm翼膜弯曲刚度EI/(10−5N·m2)
    0.31.188 × 10−2
    0.55.5 × 10−2
    0.80.2253
    1.00.44
    1.51.485
    下载: 导出CSV
  • [1] BUNGET G, SEELECKE S. BATMAV: a biologically inspired micro-air vehicle for flapping flight: kinematic modeling[C]// Active and Passive Smart Structures and Integrated Systems 2008. 2008.
    [2] BUNGET G. BATMAV: a bio-inspired micro-air vehicle for flapping flight[M]. Raleigh: North Carolina State University, 2010.
    [3] KARÁSEK M, MUIJRES F T, DE WAGTER C, et al. A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns[J]. Science, 2018, 361(6407): 1089–1094. doi: 10.1126/science.aat0350
    [4] DONG X, LI D C, XIANG J W, et al. Design and experimental study of a new flapping wing rotor micro aerial vehicle[J]. Chinese Journal of Aeronautics, 2020, 33(12): 3092–3099. doi: 10.1016/j.cja.2020.04.024
    [5] RAMEZANI A, CHUNG S J, HUTCHINSON S. A biomimetic robotic platform to study flight specializations of bats[J]. Science Robotics, 2017, 2(3): eaal2505. doi: 10.1126/scirobotics.aal2505
    [6] TAYLOR G K, THOMAS A L R. Dynamic flight stability in the desert locust Schistocerca gregaria[J]. Journal of Experimental Biology, 2003, 206(16): 2803–2829. doi: 10.1242/jeb.00501
    [7] SONG J L, LUO H X, HEDRICK T L. Performance of a quasi-steady model for hovering hummingbirds[J]. Theoretical and Applied Mechanics Letters, 2015, 5(1): 50–53. doi: 10.1016/j.taml.2014.12.003
    [8] XU R, ZHANG X D, LIU H. Effects of wing-to-body mass ratio on insect flapping flights[J]. Physics of Fluids, 2021, 33(2): 021902. doi: 10.1063/5.0034806
    [9] RISKIN D K, BERGOU A, BREUER K S, et al. Upstroke wing flexion and the inertial cost of bat flight[J]. Proceedings of the Royal Society B: Biological Sciences, 2012, 279(1740): 2945–2950. doi: 10.1098/rspb.2012.0346
    [10] HEDRICK T L, USHERWOOD J R, BIEWENER A A. Low speed maneuvering flight of the rose-breasted cockatoo (Eolophus roseicapillus). II. Inertial and aerodynamic reorientation[J]. The Journal of Experimental Biology, 2007, 210(Pt 11): 1912–1924.
    [11] FAN X Z, SWARTZ S M, BREUER K. Power requirements for bat-inspired flapping flight with heavy, highly articulated and cambered wings[J]. Journal of the Royal Society Interface, 2022, 19(194): 20220315. doi: 10.1098/rsif.2022.0315
    [12] WEIS-FOGH T. Energetics of hovering flight in hummingbirds and in drosophila[J]. Journal of Experimental Biology, 1972, 56(1): 79–104. doi: 10.1242/jeb.56.1.79
    [13] LIANG B, SUN M. Dynamic flight stability of a hovering model dragonfly[J]. Journal of Theoretical Biology, 2014, 348: 100–112. doi: 10.1016/j.jtbi.2014.01.026
    [14] RAHMAN A, TAFTI D. Role of wing inertia in maneuvering bat flights[J]. Bioinspiration & Biomimetics, 2023, 18(1): 016007. doi: 10.1088/1748-3190/ac9fb1
    [15] FAN X Z, BREUER K. Low-order modeling of flapping flight with highly articulated, cambered, heavy wings[J]. AIAA Journal, 2022, 60(2): 892–901. doi: 10.2514/1.j060661
    [16] YUSOFF H, ABDULLAH M Z, et al. Effect of skin flexibility on aerodynamic performance of flexible skin flapping wings for micro air vehicles[J]. Experimental Techniques, 2015, 39(1): 11–20. doi: 10.1111/ext.12004
    [17] WU P, STANFORD B K, SÄLLSTRÖM E, et al. Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings[J]. Bioinspiration & Biomimetics, 2011, 6(1): 016009. doi: 10.1088/1748-3182/6/1/016009
    [18] HOPE D K, DELUCA A M, O’HARA R P. Investigation into Reynolds number effects on a biomimetic flapping wing[J]. International Journal of Micro Air Vehicles, 2018, 10(1): 106–122. doi: 10.1177/1756829317745319
    [19] YIN D F, ZHANG Z S, DAI M. Effects of inertial power and inertial force on bat wings[J]. Zoological Science, 2016, 33(3): 239–245. doi: 10.2108/zs150182
    [20] YIN D F, ZHANG Z S. The inertial power and inertial force of robotic and natural bat wing[J]. Comptes Rendus Mécanique, 2016, 344(3): 195–207. doi: 10.1016/j.crme.2015.11.002
    [21] YANG X W, SONG B F, YANG W Q, et al. Study of aerodynamic and inertial forces of a dovelike flapping-wing MAV by combining experimental and numerical methods[J]. Chinese Journal of Aeronautics, 2022, 35(6): 63–76. doi: 10.1016/j.cja.2021.09.020
    [22] TIOMKIN S, RAVEH D E. A review of membrane-wing aeroelasticity[J]. Progress in Aerospace Sciences, 2021, 126: 100738. doi: 10.1016/j.paerosci.2021.100738
    [23] ZHANG Z. A flexible new technique for camera calibration[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(11): 1330–1334. doi: 10.1109/34.888718
    [24] BLEISCHWITZ R, DE KAT R, GANAPATHISUBRA-MANI B. On the fluid-structure interaction of flexible membrane wings for MAVs in and out of ground-effect[J]. Journal of Fluids and Structures, 2017, 70: 214-234.
    [25] ADDO-AKOTO R, HAN J S, HAN J H. Aerodynamic characteristics of flexible flapping wings depending on aspect ratio and slack angleJ]. Physics of Fluids, 2022, 34(5): 051911.
    [26] 朱博闻, 余永亮. 仿蝙蝠翼变形挥拍的气动力特性研究[J/OL]. 中国科学院大学学报. http://journal.ucas.ac.cn /CN/10.7523/j.ucas.2023.051. .

    ZHU B W, YU Y L. Study on aerodynamic characteristics of deforming bat-like wing in forward flight[J/OL]. Journal of University of Chinese Academy of Sciences. http://journal.ucas.ac.cn/CN/10.7523/j.ucas.2023. 051. .
  • 加载中
图(22) / 表(5)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  58
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-07-07
  • 修回日期:  2023-09-11
  • 录用日期:  2023-09-13
  • 网络出版日期:  2023-11-13

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日