留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速喷流激波噪声基础问题数值模拟研究进展

张树海 武从海 罗勇 韩帅斌 张俊龙

张树海, 武从海, 罗勇, 等. 超声速喷流激波噪声基础问题数值模拟研究进展[J]. 实验流体力学, 2024, 38(1): 1-27 doi: 10.11729/syltlx20230075
引用本文: 张树海, 武从海, 罗勇, 等. 超声速喷流激波噪声基础问题数值模拟研究进展[J]. 实验流体力学, 2024, 38(1): 1-27 doi: 10.11729/syltlx20230075
ZHANG S H, WU C H, LUO Y, et al. A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-27 doi: 10.11729/syltlx20230075
Citation: ZHANG S H, WU C H, LUO Y, et al. A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-27 doi: 10.11729/syltlx20230075

超声速喷流激波噪声基础问题数值模拟研究进展

doi: 10.11729/syltlx20230075
详细信息
    作者简介:

    张树海:(1963年—),男,河北玉田人,博士,研究员。研究方向:高精度计算方法,计算气动声学。E-mail:shuhai_zhang@163.com

    通讯作者:

    E-mail:shuhai_zhang@163.com

  • 中图分类号: O354.5;V211.3

A brief review on the numerical studies of the fundamental problems for the shock associated noise of the supersonic jets

  • 摘要: 超声速喷流问题是一个包含激波、旋涡、湍流和声波的多尺度复杂流动问题,其数值模拟方法及激波噪声产生机制是相关研究的长期热点和难点。本文简要回顾了超声速喷流激波噪声研究进展,重点介绍了针对激波噪声计算方法的非物理噪声消除技术和光滑因子设计准则,针对超声速喷流激波噪声研究设计的模型问题(包括旋涡–旋涡相互作用、激波–旋涡相互作用和激波–剪切层相互作用等),以及轴对称和三维超声速喷流的研究进展。本文还介绍了作者最近针对超声速喷流开展的三维直接数值模拟、实验验证工作和初步分析结果(包括轴对称模态定位、束缚波演化和摆动模态发展等)。
  • 图  1  超声速喷流噪声频谱[4]

    Figure  1.  Spectrum of supersonic jet noise[4]

    图  2  啸声模态跳跃[14]

    Figure  2.  Screech stage-jumps[14]

    图  3  Ma = 2的一维定常激波的数值解[65]

    Figure  3.  The numerical solution of 1–D steady shock with Ma = 2 [65]

    图  4  阶梯函数(正激波模型)分布及其导数特征[65]

    Figure  4.  Distribution of an ideal shock and its derivatives[65]

    图  5  一维正激波波后非物理噪声和残差收敛历程[65]

    Figure  5.  The non-physical oscillation of a 1–D shock wave and the evolution of residue [65]

    图  6  采用七阶精度WENO格式计算一维正激波后的非物理噪声及残差收敛历程[66]

    Figure  6.  The non-physical oscillation of a 1–D shock wave and the evolution of residue using 7th-order WENO scheme [66]

    图  7  几种七阶精度WENO格式分辨率对比[70]

    Figure  7.  Resolution comparison of several 7th-order WENO schemes by modified wavenumbers[70]

    图  8  间断附近模板中最大光滑因子与最小光滑因子的比值[70]

    Figure  8.  The ratio of the maximum and minimum smoothness indica-tors in a stencil near the discontinuity[70]

    图  9  几种光滑因子在高斯函数中的表现[70]

    Figure  9.  The distribution of the smoothness indicators for a Gaussian function[70]

    图  10  激波熵波问题计算及比较[70]

    Figure  10.  Calculation and comparison of shock entropy wave problem[70]

    图  11  超声速喷流实验纹影图像

    Figure  11.  schlieren images of supersonic jet

    图  12  超声速喷流流场结构示意图[3]

    Figure  12.  Schematic for fundamental flow structures of supersonic jet flow[3]

    图  13  剪切层发展过程中的旋涡产生和合并过程[73]

    Figure  13.  Vortex generation and merging in the shear layer[73]

    图  14  同向Gaussian涡对合并过程[76]

    Figure  14.  Development of two co-rotating Gaussian vortices[76]

    图  15  同向Gaussian涡对合并过程产生的声波[76]

    Figure  15.  The sound pressure generated by co-rotating Gaussian vortex merging[76]

    图  16  激波–弱旋涡干扰产生的噪声[86]

    Figure  16.  The sound waves generated by the shock-weak-vortex interaction[86]

    图  17  激波–强旋涡干扰中的激波变形[86]

    Figure  17.  The deformation of shock wave in the shock-strong-vortex interaction [86]

    图  18  激波–强旋涡干扰中旋涡的变形[86]

    Figure  18.  The vortex evolution in the shock-strong-vortex interaction [86]

    图  19  激波–强旋涡干扰产生的多级噪声[87]

    Figure  19.  The multiple sound generation in the shock-strong-vortex interaction[87]

    图  20  激波串与剪切层相互作用模型[52]

    Figure  20.  The model of the shock cell and shear layer interaction[52]

    图  21  压缩–膨胀波模型与旋涡相互作用形成激波泄露机制[54]

    Figure  21.  The compression-expansion wave model interacts with the vortex to form a shock wave leakage mechanism[54]

    图  22  斜激波与超声速剪切层干扰模型示意图[72]

    Figure  22.  Schematic diagram of a model for the shock wave and supersonic shear layer interaction[72]

    图  23  激波与超声速剪切层相互作用形成的2个干扰区[72]

    Figure  23.  Two interacting zones of a shock wave interacting with a supersonic shear layer[72]

    图  24  声波的产生和传播[72]

    Figure  24.  The generation and radiation of acoustic wave[72]

    图  25  声波的产生和传播[72]

    Figure  25.  The generation and radiation of acoustic wave[72]

    图  26  瞬时压力等值线云图[33]

    Figure  26.  Instantaneous pressure field of screeching jet[33]

    图  27  瞬态密度等值面[33]

    Figure  27.  Instantaneous density isosurface of screeching jet[33]

    图  28  啸声基本模态波长及其与Ponton实验结果对比[33]

    Figure  28.  Numerical wavelengths of fundamental screech modes and their comparison with the experimental results of Ponton[33]

    图  29  声压级及其与Ponton实验结果对比[33]

    Figure  29.  Comparison of the numerical sound pressure spectra with the experimental results by Ponton for the screeching jet[33]

    图  30  轴对称喷流计算示意图(上)和三维喷流计算示意图(下)[91]

    Figure  30.  Schematic diagram for the axisymmetric (top) and three dimensional supersonic jets (bottom)[91]

    图  31  CARDC消声室内的喷流装置和麦克风阵列

    Figure  31.  Experimental setup of jet nozzle and microphone array in anechoic at CARDC

    图  32  超声速喷流胀量及涡量分布[91]

    Figure  32.  The contours of dilation and vorticity[91]

    图  33  喷流轴线上的平均密度分布结果及其比较[33, 92]

    Figure  33.  The distribution of the axial density of numerical results and their comparison with references[33, 92]

    图  34  Maj = 1.10的欠膨胀超声速喷流中啸声A1模态在周期内的时空演化历程[91]

    Figure  34.  The evolution of A1 mode screech at Maj = 1.10[91]

    图  35  Maj = 1.19的欠膨胀超声速喷流中啸声A2模态在周期内的时空演化历程[91]

    Figure  35.  The evolution of A2 mode screech at Maj = 1.19 [91]

    图  36  DMD模态频谱分布[96]

    Figure  36.  The frequency spectrum of DMD modes[96]

    图  37  速度场的前两阶DMD模态分布[96]

    Figure  37.  The first and the second DMD modes of velocity field[96]

    图  38  速度场一阶DMD模态的涡组分和可压缩组分[96]

    Figure  38.  The vortical and compressible components of the first DMD mode of the velocity field[96]

    图  39  一阶DMD模态径向速度的流声组分在r = 0.2D处的时空图[96]

    Figure  39.  The space-time diagram for the vortical and compressible components of the first DMD mode for the radial velocity[96]

    图  40  喷管唇口处(距离中心0.642D)压力脉动信号监测点示意图[103]

    Figure  40.  The schematic diagram of the pressure pulsation signal moni-toring point at the nozzle lip (0.642D from the center)[103]

    图  41  喷管出口平面监测点压力信号的RMS计算结果[103]

    Figure  41.  The RMS distribution in the nozzle exit plane[103]

    图  42  A、B监测点压力信号随时间演化过程[103]

    Figure  42.  The time evolution of pressure at A and B[103]

    图  43  A、B连线流向截面数值纹影和胀量场随时间演化[103]

    Figure  43.  The time evolution of the schlieren and dilatation in the flapping plane[103]

    图  44  图45中声波2'的产生过程[103]

    Figure  44.  The generating process of the sound wave 2' in figure 45[103]

    表  1  数值模拟结果与文献和实验结果的对比

    Table  1.   The numerical simulation results are compared with the literature and experimental results

    Maj 主导模态 数值结果 实验结果
    Present LES[46] URANS[33] Ponton[93] CARDC
    1.19 频率/Hz 5823 5884 6136 5793 6000
    1.19 声压级/dB 143.1 141.5 139.8 141.5 142.9
    1.27 频率/Hz 5178 5226
    1.27 声压级/dB 146.2 146.3
    1.42 频率/Hz 5235 5493 5326 5237
    1.42 声压级/dB 148.8 145.3 147.7 149.2
    下载: 导出CSV
  • [1] GOLDSTEIN M E. Aeroacoustics of turbulent shear flows[J]. Annual Review of Fluid Mechanics, 1984, 16: 263–285. doi: 10.1146/annurev.fl.16.010184.001403
    [2] 李晓东, 徐希海, 高军辉, 等. 喷流噪声研究进展与展望[J]. 空气动力学学报, 2018, 36(3): 398–409.

    LI X D, XU X H, GAO J H, et al. Progress and prospect on jet noise study[J]. Acta Aerodynamica Sinica, 2018, 36(3): 398–409.
    [3] TAM C K W. Supersonic jet noise[J]. Annual Review of Fluid Mechanics, 1995, 27: 17–43. doi: 10.1146/annurev.fl.27.010195.000313
    [4] SEINER J. Advances in high speed jet aeroacoustics[C]//Proc of the 9th Aeroacoustics Conference. 1984. doi: 10.2514/6.1984-2275.
    [5] POWELL A. On the mechanism of choked jet noise[J]. Proceedings of the Physical Society Section B, 1953, 66(12): 1039–1056. doi: 10.1088/0370-1301/66/12/306
    [6] POWELL A. On the noise emanating from a two-dimensional jet above the critical pressure[J]. Aeronautical Quarterly, 1953, 4(2): 103–122. doi: 10.1017/s0001925900000822
    [7] POWELL A. On edge tones and associated phenomena[J]. Acta Acust united with Acust, 1953, 3: 233–243.
    [8] POWELL A. The reduction of choked jet noise[J]. Proceedings of the Physical Society Section B, 1954, 67(4): 313–327. doi: 10.1088/0370-1301/67/4/306
    [9] POWELL A, UMEDA Y, ISHII R. Observations of the oscillation modes of choked circular jets[J]. The Journal of the Acoustical Society of America, 1992, 92(5): 2823–2836. doi: 10.1121/1.404398
    [10] MERLE M. Sur les fréquencies des sondes émises par un jet d'air á grande vitesse[J]. C. R. Academy of Science Paris, 1956, 243: 490–493.
    [11] DAVIES M G, OLDFIELD D E S. Tones from a choked axisymmetric jet. I. cell structure, eddy velocity and source locations[J]. Acustica, 1962, 12: 257–266.
    [12] DAVIES M G, OLDFIELD D E S. Tones from a choked axisymmetric jet. II. The self excited loop and mode of oscillatiion[J]. Acustica, 1962, 12: 267–277.
    [13] PONTON M K, SEINER J M. The effects of nozzle exit lip thickness on plume resonance[J]. Journal of Sound and Vibration, 1992, 154(3): 531–549. doi: 10.1016/0022-460X(92)90784-U
    [14] CLEM M M, ZAMAN K, FAGAN A F. Variation of shock-spacing during screech stage-jumps[J]. International Journal of Aeroacoustics, 2016, 15(3): 324–335. doi: 10.1177/1475472x16630888
    [15] TAM C K W, AHUJA K K, JONES R R III. Screech tones from free and ducted supersonic jets[J]. AIAA Journal, 1994, 32(5): 917–922. doi: 10.2514/3.12074
    [16] RAMAN G. Supersonic jet screech: half-century from Powell to the present[J]. Journal of Sound and Vibration, 1999, 225(3): 543–571. doi: 10.1006/jsvi.1999.2181
    [17] WESTLEY R, WOOLLEY J H. An investigation of the near noise fields of a choked axisymmetric air jet[J]. National Research Council, Aeronautical Report LR, 1968, 20-21: 147–167.
    [18] WESTLEY R, WOOLLEY J H. The near field sound pressures of a choked jet during a screech cycle[R]. AGARD-CP-42, 1969.
    [19] WESTLEY R, WOOLLEY J H. The near field sound pressures of a choked jet when oscillating in the spinning mode[C]//Proc of the 2nd Aeroacoustics Conference. 1975. doi: 10.2514/6.1975-479
    [20] UMEDA Y, ISHII R. Sound sources of screech tone radiated from circular supersonic jet oscillating in the helical mode[J]. International Journal of Aeroacoustics, 2002, 1(4): 355–384. doi: 10.1260/147547202765275961
    [21] HARPER-BOURNE M, FISHER M J. The noise from shock waves in supersonic jets[R]. AGARD-CP-131, 1973.
    [22] TANNA H K. An experimental study of jet noise part I: turbulent mixing noise[J]. Journal of Sound and Vibration, 1977, 50(3): 405–428. doi: 10.1016/0022-460X(77)90493-X
    [23] TANNA H K. An experimental study of jet noise part II: shock associated noise[J]. Journal of Sound and Vibration, 1977, 50(3): 429–444. doi: 10.1016/0022-460x(77)90494-1
    [24] TAM C K W, TANNA H K. Shock associated noise of supersonic jets from convergent-divergent nozzles[J]. Journal of Sound and Vibration, 1982, 81(3): 337–358. doi: 10.1016/0022-460X(82)90244-9
    [25] BRIDGES J, WERNET M. Turbulence associated with broadband shock noise in hot jets[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2834
    [26] VISWANATHAN K. Scaling laws and a method for identifying components of jet noise[J]. AIAA Journal, 2006, 44(10): 2274–2285. doi: 10.2514/1.18486
    [27] VISWANATHAN K, ALKISLAR M B, CZECH M J. Characteristics of the shock noise component of jet noise[J]. AIAA Journal, 2010, 48(1): 25–46. doi: 10.2514/1.38521
    [28] KUO C W, McLAUGHLIN D K, MORRIS P. Effects of supersonic jet conditions on broadband shock-associated noise[R]. AIAA-2011-1032, 2011.
    [29] SHEN H, TAM C K W. Numerical simulation of the generation of axisymmetric mode jet screech tones[J]. AIAA Journal, 1998, 36: 1801–1807. doi: 10.2514/3.14051
    [30] SHEN H, TAM C K W. Effects of jet temperature and nozzle-lip thickness on screech tones[J]. AIAA Journal, 2000, 38: 762–767. doi: 10.2514/3.14478
    [31] SHEN H, TAM C K W. Three-dimensional numerical simula-tion of the jet screech phenomenon[J]. AIAA Journal, 2002, 40: 33–41. doi: 10.2514/3.14995
    [32] LI X D, GAO J H. Numerical simulation of the generation mechanism of axisymmetric supersonic jet screech tones[J]. Physics of Fluids, 2005, 17(8): 085105. doi: 10.1063/1.2033909
    [33] LI X D, GAO J H. Numerical simulation of the three-dimensional screech phenomenon from a circular jet[J]. Physics of Fluids, 2008, 20(3): 035101. doi: 10.1063/1.2844474
    [34] KIM Y S, NAKAMURA Y. Effect of nozzle lip shape on screech tone in supersonic jet[R]. AIAA-2006-3706, 2006.
    [35] BERLAND J, BOGEY C, BAILLY C. Numerical study of screech generation in a planar supersonic jet[J]. Physics of Fluids, 2007, 19(7): 075105. doi: 10.1063/1.2747225
    [36] LOH C Y, HULTGREN L S, JORGENSON P C E. Near field screech noise computation for an underexpanded supersonic jet by the CE/SE method[R]. AIAA-2001-2252, 2001.
    [37] JORGENSON P C E, LOH C Y. Computing axisymmetric jet screech tones using unstructured grids[R]. AIAA-2002-3889, 2002.
    [38] LOH C Y, HIMANSU A, HULTGREN L S. A 3-D CE/SE navier-stokes solver with unstructured hexahedral grid for computation of nearfield jet screech noise[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3207
    [39] LOH C Y, HULTGREN L S. Near-field noise computation for a supersonic circular jet[R]. AIAA-2005-3042, 2005.
    [40] LOH C Y, HULTGREN L S. Jet screech noise computa-tion[J]. AIAA Journal, 2006, 44(5): 992–998. doi: 10.2514/1.4591
    [41] IMAMOGLU B, BAYSAL O, BALAKUMAR P. Computa-tion of shock induced noise in imperfectly expanded super-sonic jets[R]. AIAA-2002-2527, 2002.
    [42] IMAMOGLU B, BALAKUMAR P. Three dimensional computation of shock induced noise in imperfectly expanded supersonic jets[C]//Proc of the 9th AIAA/CEAS Aeroacou-stics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3249
    [43] IMAMOGLU B, BAYSAL O, BALAKUMAR P. Computa-tion of shock induced noise in imperfectly expanded super-sonic jets[J]. International Journal of Aeroacoustics. 2007, 6(2): 127-146. doi: 10.1260/147547207781041877
    [44] AL-QADI I M A, SCOTT J N. High-order three-dimensional numerical simulation of a supersonic rectangu-lar jet[R]. AIAA-2003-3238, 2003. doi: 10.2514/6.2003-3238
    [45] LO S C. Numerical simulations of supersonic jet flows[D]. Indiana: Purdue University, 2010.
    [46] GAO J H, LI X D. Large eddy simulation of supersonic jet noise from a circular nozzle[J]. International Journal of Aeroacoustics, 2011, 10(4): 465–474. doi: 10.1260/1475-472x.10.4.465
    [47] BODONY D J, LELE S K. Current status of jet noise predictions using large-eddy simulation[J]. AIAA Journal, 2008, 46(2): 364–380. doi: 10.2514/1.24475
    [48] LIU J H, KAILASANATH K, RAMAMURTI R, et al. Large-eddy simulations of a supersonic jet and its near-field acoustic properties[J]. AIAA Journal, 2009, 47(8): 1849–1865. doi: 10.2514/1.43281
    [49] MUNDAY D, GUTMARK E, LIU J, et al. Flow structure and acoustics of supersonic jets from conical convergent-divergent nozzles[J]. Physics of Fluids, 2011, 23(11): 116102. doi: 10.1063/1.3657824
    [50] DU Y L. Supersonic jet noise prediction and noise source investigation for realistic baseline and chevron nozzles based on hybrid RANS/LES simulations[D]. Common-wealth of Pennsylvania: The Pennsylvania State Univerisity, 2011.
    [51] LIU J H, CORRIGAN A, KAILASANATH K, et al. Computational study of shock-associated noise characteris-tics using LES[R]. AIAA-2013-2199, 2013.
    [52] MANNING T A, LELE S K. A numerical investigation of sound generation in supersonic jet screech[C]//Proc of the 6th Aeroacoustics Conference and Exhibit. 2000. doi: 10.2514/6.2000-2081
    [53] SUZUKI T, LELE S K. Shock leakage through an unsteady vortex-laden mixing layer: application to jet screech[J]. Journal of Fluid Mechanics, 2003, 490: 139–167. doi: 10.1017/s0022112003005214
    [54] LUI C C M. A numerical investigation of shock-associated noise[D]. State of California: Stanford University, 2003.
    [55] 李晓东, 江旻, 高军辉, 等. 计算气动声学进展与展望[J]. 中国科学: 物理学 力学 天文学, 2014, 44(3): 234–248.

    LI X D, JIANG M, GAO J H, et al. Progress and prospective of computational aeroacoustics[J]. Scientia Sinica: Physica, Mechanica & Astronomica, 2014, 44(3): 234–248.
    [56] COCKBURN B, SHU C W. TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework[J]. Mathematics of Computation, 1989, 52(186): 411–435. doi: 10.1090/s0025-5718-1989-0983311-4
    [57] LIU Y, VINOKUR M, WANG Z J. Spectral difference method for unstructured grids I: Basic formulation[J]. Journal of Computational Physics, 2006, 216(2): 780–801. doi: 10.1016/j.jcp.2006.01.024
    [58] WANG Z J. Spectral (finite) volume method for conserva-tion laws on unstructured grids: basic formulation[J]. Journal of Computational Physics, 2002, 178(1): 210–251. doi: 10.1006/jcph.2002.7041
    [59] JIANG G S, SHU C W. Efficient implementation of weighted ENO schemes[J]. Journal of Computational Physics, 1996, 126(1): 202–228. doi: 10.1006/jcph.1996.0130
    [60] DENG X G, ZHANG H X. Developing high-order weighted compact nonlinear schemes[J]. Journal of Computational Physics, 2000, 165(1): 22–44. doi: 10.1006/jcph.2000.6594
    [61] ZHANG S H, JIANG S F, SHU C W. Development of nonlinear weighted compact schemes with increasingly higher order accuracy[J]. Journal of Computational Physics, 2008, 227(15): 7294–7321. doi: 10.1016/j.jcp.2008.04.012
    [62] LIU X L, ZHANG S H, ZHANG H X, et al. A new class of central compact schemes with spectral-like resolution I: Linear schemes[J]. Journal of Computational Physics, 2013, 248: 235–256. doi: 10.1016/j.jcp.2013.04.014
    [63] LIU X L, ZHANG S H, ZHANG H X, et al. A new class of central compact schemes with spectral-like resolution II: hybrid weighted nonlinear schemes[J]. Journal of Computa-tional Physics, 2015, 284: 133–154. doi: 10.1016/j.jcp.2014.12.027
    [64] FU L, HU X Y, ADAMS N A. A family of high-order targeted ENO schemes for compressible-fluid simula-tions[J]. Journal of Computational Physics, 2016, 305: 333–359. doi: 10.1016/j.jcp.2015.10.037
    [65] ZHANG S H, SHU C W. A new smoothness indicator for the WENO schemes and its effect on the convergence to steady state solutions[J]. Journal of Scientific Computing, 2007, 31(1): 273–305. doi: 10.1007/s10915-006-9111-y
    [66] ZHANG S H, JIANG S F, SHU C W. Improvement of convergence to steady state solutions of Euler equations with the WENO schemes[J]. Journal of Scientific Comput-ing, 2011, 47(2): 216–238. doi: 10.1007/s10915-010-9435-5
    [67] BALSARA D S, SHU C W. Monotonicity preserving weighted essentially non-oscillatory schemes with increasing-ly high order of accuracy[J]. Journal of Computational Physics, 2000, 160(2): 405–452. doi: 10.1006/jcph.2000.6443
    [68] ZHANG S H, DENG X G, MAO M L, et al. Improvement of convergence to steady state solutions of Euler equations with weighted compact nonlinear schemes[J]. Acta Mathema-ticae Applicatae Sinica, English Series, 2013, 29(3): 449–464. doi: 10.1007/s10255-013-0230-6
    [69] WU C H, WU L, LI H, et al. Very high order WENO schemes using efficient smoothness indicators[J]. Journal of Computational Physics, 2021, 432: 110158. doi: 10.1016/j.jcp.2021.110158
    [70] WU C H, WU L, ZHANG S H. A smoothness indicator constant for sine functions[J]. Journal of Computational Physics, 2020, 419: 109661. doi: 10.1016/j.jcp.2020.109661
    [71] 武从海, 李虎, 刘旭亮, 等. 7阶WENO-S格式的计算效率研究[J]. 力学学报, 2023, 55(1): 239–253.

    WU C H, LI H, LIU X L, et al. Investigation of the time efficiency of the seventh-order weno-s scheme[J]. Chinese Journal of Theoretical and Applied Mechanics, 2023, 55(1): 239–253.
    [72] 张树海, 李虎, 王益民. 含激波、旋涡和声波的复杂多尺度流动数值模拟研究[J]. 空气动力学学报, 2018, 36(3): 449–462.

    ZHANG S H, LI H, WANG Y M. Numerical study for complex multi-scale flow with shock, vortex and sound wave[J]. Acta Aerodynamica Sinica, 2018, 36(3): 449–462.
    [73] COLONIUS T, LELE S K, MOIN P. Sound generation in a mixing layer[J]. Journal of Fluid Mechanics, 1997, 330: 375–409. doi: 10.1017/s0022112096003928
    [74] CERRETELLI C, WILLIAMSON C H K. The physical mechanism for vortex merging[J]. Journal of Fluid Mechanics, 2003: 41-77.
    [75] MITCHELL B E, LELE S K, MOIN P. Direct computation of the sound from a compressible co-rotating vortex pair[J]. Journal of Fluid Mechanics, 1995, 285: 181–202. doi: 10.1017/s0022112095000504
    [76] ZHANG S H, LI H, LIU X L, et al. Classification and sound generation of two-dimensional interaction of two Taylor vortices[J]. Physics of Fluids, 2013, 25(5): 056103. doi: 10.1063/1.4807065
    [77] PARMENTIER P, WINCKELMANS G, CHATELAIN P. A Vortex Particle-Mesh method for subsonic compressible flows[J]. Journal of Computational Physics, 2018, 354: 692–716. doi: 10.1016/j.jcp.2017.10.040
    [78] ZHAO F X, JI X, SHYY W, et al. A compact high-order gas-kinetic scheme on unstructured mesh for acoustic and shock wave computations[J]. Journal of Computational Physics, 2022, 449: 110812. doi: 10.1016/j.jcp.2021.110812
    [79] FU L, HU X Y, ADAMS N A. Improved five- and six-point targeted essentially nonoscillatory schemes with adaptive dissipation[J]. AIAA Journal, 2019, 57(3): 1143–1158. doi: 10.2514/1.j057370
    [80] ELLZEY J L, HENNEKE M R, PICONE J M, et al. The interaction of a shock with a vortex: shock distortion and the production of acoustic waves[J]. Physics of Fluids, 1995, 7(1): 172–184. doi: 10.1063/1.868738
    [81] ELLZEY J L, HENNEKE M R. The shock-vortex interac-tion: the origins of the acoustic wave[J]. Fluid Dynamics Research, 1997, 21(3): 171–184. doi: 10.1016/S0169-5983(97)00006-3
    [82] ELLZEY J L, HENNEKE M R. The acoustic wave from a shock-vortex interaction: comparison between theory and computation[J]. Fluid Dynamics Research, 2000, 27(1): 53–64. doi: 10.1016/S0169-5983(99)00041-6
    [83] INOUE O, HATTORI Y. Sound generation by shock-vortex interactions[J]. Journal of Fluid Mechanics, 1999, 380: 81–116. doi: 10.1017/s0022112098003565
    [84] INOUE O. Propagation of sound generated by weak shock-vortex interaction[J]. Physics of Fluids, 2000, 12(5): 1258–1261. doi: 10.1063/1.870378
    [85] INOUE O, TAKAHASHI T, HATAKEYAMA N. Separa-tion of reflected shock waves due to the secondary interac-tion with vortices: another mechanism of sound generation[J]. Physics of Fluids, 2002, 14(10): 3733–3744. doi: 10.1063/1.1507592
    [86] ZHANG S H, ZHANG Y T, SHU C W. Multistage interaction of a shock wave and a strong vortex[J]. Physics of Fluids, 2005, 17(11): 116101. doi: 10.1063/1.2084233
    [87] CHATTERJEE A, VIJAYARAJ S. Multiple sound genera-tion in interaction of shock wave with strong vortex[J]. AIAA Journal, 2008, 46(10): 2558–2567. doi: 10.2514/1.36050
    [88] ZHANG S H, ZHANG Y T, SHU C W. Interaction of an oblique shock wave with a pair of parallel vortices: shock dynamics and mechanism of sound generation[J]. Physics of Fluids, 2006, 18(12): 126101. doi: 10.1063/1.2391806
    [89] ZHANG S H, JIANG S F, ZHANG Y T, et al. The mechanism of sound generation in the interaction between a shock wave and two counter-rotating vortices[J]. Physics of Fluids, 2009, 21(7): 076101. doi: 10.1063/1.3176473
    [90] 刘旭亮, 张树海. 二维激波与剪切层相互作用的直接数值模拟研究[J]. 力学学报, 2013, 45(1): 61–75. doi: 10.6052/0459-1879-12-106

    LIU X L, ZHANG S H. Direct numerical simulation of the interaction of 2d shock wave and shear layer[J]. Chinese Journal of Theoretical and Applied Mechanics, 2013, 45(1): 61–75. doi: 10.6052/0459-1879-12-106
    [91] 李虎. 轴对称超声速喷流激波噪声数值模拟研究[D]. 绵阳: 中国空气动力研究与发展中心. 2016.
    [92] PANDA J. An experimental investigation of screech noise generation[J]. Journal of Fluid Mechanics, 1999, 378: 71–96. doi: 10.1017/s0022112098003383
    [93] PONTON M K, SEINER J M, BROWN M C. Near field pressure fluctuations in the exit plane of a choked axisym-metric nozzle[R]. NASA Technical Memorandum 113137, 1997.
    [94] 李虎, 罗勇, 韩帅斌, 等. 基于模态分解的轴对称超声速射流啸声产生位置数值分析[J]. 力学学报, 2022, 54(4): 975–990.

    LI H, LUO Y, HAN S B, et al. Numerical study on the generation position of screech tone in axisymmetric super-sonic jet based on modal decomposition[J]. Chinese Journal of Theoretical and Applied Mechanics, 2022, 54(4): 975–990.
    [95] LI H, LUO Y, HAN S, et al. The source localization and dynamical evolution of axisymmetric screech modes in underexpanded supersonic jets[J]. Aerospace Science and Technology, 2023, 140: 108427. doi: 10.1016/j.ast.2023.108427
    [96] HAN S B, LUO Y, LI H, et al. Data-driven and physical property-based hydro-acoustic mode decomposition[J]. Physics of Fluids, 2022, 34(2): 26102. doi: 10.1063/5.0079906
    [97] GOJON R, BOGEY C, MIHAESCU M. Oscillation modes in screeching jets[J]. AIAA Journal, 2018, 56(7): 2918–2924. doi: 10.2514/1.j056936
    [98] BOGEY C. Interactions between upstream-propagating guided jet waves and shear-layer instability waves near the nozzle of subsonic and nearly ideally expanded supersonic free jets with laminar boundary layers[J]. Journal of Fluid Mechanics, 2022, 949: A41. doi: 10.1017/jfm.2022.776
    [99] EDGINGTON-MITCHELL D, JAUNET V, JORDAN P, et al. Upstream-travelling acoustic jet modes as a closure mechanism for screech[J]. Journal of Fluid Mechanics, 2018, 855: R1. doi: 10.1017/jfm.2018.642
    [100] EDGINGTON-MITCHELL D, WANG T Y, NOGUEIRA P, et al. Waves in screeching jets[J]. Journal of Fluid Mechanics, 2021, 913: A7. doi: 10.1017/jfm.2020.1175
    [101] EDGINGTON-MITCHELL D, LI X R, LIU N H, et al. A unifying theory of jet screech[J]. Journal of Fluid Mechanics, 2022, 945: A8. doi: 10.1017/jfm.2022.549
    [102] UNNIKRISHNAN S, GAITONDE D V. Acoustic, hydrodyna-mic and thermal modes in a supersonic cold jet[J]. Journal of Fluid Mechanics, 2016, 800: 387–432. doi: 10.1017/jfm.2016.410
    [103] 罗勇. 复杂剪切流动数值模拟及噪声产生机理研究[D]. 绵阳: 中国空气动力研究与发展中心. 2023.
    [104] SEINER J M, MANNING J C, PONTON M K. The preferred spatial mode of instability for a Mach 2 jet[C]//Proc of the 10th Aeroacoustics Conference. 1986. doi: 10.2514/6.1986-1942.
    [105] EDGINGTON-MITCHELL D, WEIGHTMAN J, LOCK S, et al. The generation of screech tones by shock leakage[J]. Journal of Fluid Mechanics, 2021, 908: A46. doi: 10.1017/jfm.2020.945
  • 加载中
图(44) / 表(1)
计量
  • 文章访问数:  91
  • HTML全文浏览量:  36
  • PDF下载量:  46
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-16
  • 修回日期:  2023-08-23
  • 录用日期:  2023-09-08
  • 网络出版日期:  2024-01-26
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日