留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

抑制运动可渗透面虚假噪声的四极子修正模型

周志腾 王士召

周志腾, 王士召. 抑制运动可渗透面虚假噪声的四极子修正模型[J]. 实验流体力学, 2024, 38(1): 46-56 doi: 10.11729/syltlx20230072
引用本文: 周志腾, 王士召. 抑制运动可渗透面虚假噪声的四极子修正模型[J]. 实验流体力学, 2024, 38(1): 46-56 doi: 10.11729/syltlx20230072
ZHOU Z T, WANG S Z. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56 doi: 10.11729/syltlx20230072
Citation: ZHOU Z T, WANG S Z. A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 46-56 doi: 10.11729/syltlx20230072

抑制运动可渗透面虚假噪声的四极子修正模型

doi: 10.11729/syltlx20230072
基金项目: 国家自然科学基金基础科学中心项目(11988102);国家自然科学基金重大研究计划重点支持项目(92252203)
详细信息
    作者简介:

    周志腾:(1996—),男,江苏盐城人,博士研究生。研究方向:湍流噪声。E-mail:zhouzhiteng18@mails.ucas.ac.cn

    通讯作者:

    E-mail:wangsz@lnm.imech.ac.cn

  • 中图分类号: O357;V211.3

A quadrupole correction model to suppress spurious sound with moving permeable integral surfaces

  • 摘要: Ffowcs Williams-Hawkings(FW–H)方程是Lighthill声比拟方程在运动边界问题中的推广,但在FW–H方程中使用运动可渗透积分面时,常因涡结构穿过可渗透积分面引起虚假噪声。本文利用可渗透积分面上Lighthill应力张量的通量估计涡结构对远场噪声的贡献,并消去其所导致的虚假噪声。在频域Lighthill应力张量通量四极子修正模型基础上,本文考虑了运动积分面对四极子修正模型的影响,提出了适用于运动可渗透积分面的四极子修正模型。该模型基于冻结流假设与格林函数的远场近似特性,通过求解关于四极子体积分项的代数方程,在被积函数中包含了运动积分面的速度。圆柱绕流和对流涡远场噪声预测验证了本文所提出修正模型的有效性。
  • 图  1  二维圆柱绕流涡量分布云图和FW–H积分面位置示意图

    Figure  1.  Diagram of vorticity distribution of flows around a circular cylinder and the location of the FW–H integration surface

    图  2  不同出口面修正前后的远场噪声计算结果对比

    Figure  2.  Comparison of far-field sound predicted by using formulations with and without quadrupole correction model

    图  3  二维对流涡压力分布及坐标系定义示意图

    Figure  3.  Diagram of the pressure distribution of a convecting vortex

    图  4  二维对流涡算例FW–H积分面位置及运动示意图

    Figure  4.  Diagram of position and motion of the FW–H surface

    图  5  来流马赫数0.1的对流涡算例中,四极子项相反数与单极子项、偶极子项之和的对比

    Figure  5.  Comparison between the negative quadrupole correction model and the summary of the monopole and dipole terms at the freestream Mach number 0.1

    图  6  来流马赫数0.3的对流涡算例中,四极子项相反数与单极子项、偶极子项之和的对比

    Figure  6.  Comparison between the negative quadrupole correction model and the summary of the monopole and dipole terms at the freestream Mach number 0.3

    图  7  来流马赫数0.5的对流涡算例中,四极子项相反数与单极子项、偶极子项之和的对比

    Figure  7.  Comparison between the negative quadrupole correction model and the summary of the monopole and dipole terms at the freestream Mach number 0.5

    图  8  来流马赫数0.3的对流涡算例中,四极子项相反数与单极子项、偶极子项之和的对比

    Figure  8.  Comparison between the negative quadrupole correction model and the summary of the monopole and dipole terms at the freestream Mach number 0.3

    图  9  来流马赫数0.3的对流涡算例中,四极子项相反数与单极子项、偶极子项之和的对比

    Figure  9.  Comparison between the negative quadrupole correction model and the summary of the monopole and dipole terms at the freestream Mach number 0.3

  • [1] JI J C, WANG C, WANG L A, et al. A recursive approach for aeroacoustic phased array measurements in wind tunnels[J]. The Journal of the Acoustical Society of America, 2021, 150(1): 417–427. doi: 10.1121/10.0005543
    [2] LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
    [3] TIAN H P, LYU B S. Prediction of broadband noise from rotating blade elements with serrated trailing edges[J]. Physics of Fluids, 2022, 34(8): 085109. doi: 10.1063/5.0094423
    [4] SUN X F, JIANG Y S, LIANG A, et al. An immersed boundary computational model for acoustic scattering problems with complex geometries[J]. The Journal of the Acoustical Society of America, 2012, 132(5): 3190–3199. doi: 10.1121/1.4757747
    [5] LI H, LUO Y, ZHANG S H. Assessment of upwind/symmetric WENO schemes for direct numerical simulation of screech tone in supersonic jet[J]. Journal of Scientific Computing, 2021, 87(1): 1–39. doi: 10.1007/s10915-020-01407-6
    [6] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321–342. doi: 10.1098/rsta.1969.0031
    [7] TAY W B, LU Z B, RAMESH S S, et al. Numerical simulations of serrated propellers to reduce noise[M]//PANDA D K. Supercomputing Frontiers. Cham: Springer International Publishing, 2020: 87-103. doi: 10.1007/978-3-030-48842-0_6
    [8] SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. part I: methods and tests[J]. International Journal of Aeroacoustics, 2005, 4(3): 213–245. doi: 10.1260/1475472054771376
    [9] RICHARDS S K, CHEN X X, HUANG X, et al. Computation of fan noise radiation through an engine exhaust geometry with flow[J]. International Journal of Aeroacoustics, 2007, 6(3): 223–241. doi: 10.1260/147547207782419534
    [10] ZHANG Y F, CHEN H X, WANG K, et al. Aeroacoustic prediction of a multi-element airfoil using wall-modeled large-eddy simulation[J]. AIAA Journal, 2017, 55(12): 4219–4233. doi: 10.2514/1.j055853
    [11] GAO J H, LI X D. Numerical simulation of the noise from a subsonic jet in static and flight conditions[C]//Proc of the Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. 2019: AIAA2019-2666. doi: 10.2514/6.2019-2666
    [12] ZHANG P K, LIU Y, LI Z Y, et al. Numerical study on reducing aerodynamic drag and noise of circular cylinders with non-uniform porous coatings[J]. Aerospace Science and Technology, 2020, 107: 106308. doi: 10.1016/j.ast.2020.106308
    [13] LOCKARD D P. An efficient, two-dimensional implementa-tion of the Ffowcs Williams and Hawkings equation[J]. Journal of Sound and Vibration, 2000, 229(4): 897–911. doi: 10.1006/jsvi.1999.2522
    [14] BOZORGI A, SIOZOS-ROUSOULIS L, AHMAD NOURBA-KHSH S, et al. A two-dimensional solution of the FW-H equation for rectilinear motion of sources[J]. Journal of Sound and Vibration, 2017, 388: 216–229. doi: 10.1016/j.jsv.2016.10.035
    [15] SHUR M L, SPALART P R, STRELETS M K. Noise prediction for increasingly complex jets. part II: applications[J]. International Journal of Aeroacoustics, 2005, 4(3): 247–266. doi: 10.1260/1475472054771385
    [16] ZHONG S Y, ZHANG X. A sound extrapolation method for aeroacoustics far-field prediction in presence of vortical waves[J]. Journal of Fluid Mechanics, 2017, 820: 424–450. doi: 10.1017/jfm.2017.219
    [17] ZHONG S Y, ZHANG X. A generalized sound extrapolation method for turbulent flows[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2018, 474(2210): 20170614. doi: 10.1098/rspa.2017.0614
    [18] ZHONG S Y, ZHANG X. On the frequency domain formulation of the generalized sound extrapolation method[J]. The Journal of the Acoustical Society of America, 2018, 144(1): 24–31. doi: 10.1121/1.5044515
    [19] WANG M, LELE S K, MOIN P. Computation of quadrupole noise using acoustic analogy[J]. AIAA Journal, 1996, 34(11): 2247–2254. doi: 10.2514/3.13387
    [20] NITZKORSKI Z, MAHESH K. A dynamic end cap technique for sound computation using the Ffowcs Williams and Hawkings equations[J]. Physics of Fluids, 2014, 26(11): 115101. doi: 10.1063/1.4900876
    [21] LOCKARD D, CASPER J. Permeable surface corrections for Ffowcs Williams and Hawkings integrals[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference (26th AIAA Aeroacoustics Conference). 2005. doi: 10.2514/6.2005-2995
    [22] ZHOU Z T, WANG H P, WANG S Z, et al. Lighthill stress flux model for Ffowcs Williams–Hawkings integrals in frequency domain[J]. AIAA Journal, 2021, 59(11): 4809–4814. doi: 10.2514/1.j060070
    [23] ZHOU Z T, WANG H P, WANG S Z. Simplified permeable surface correction for frequency-domain Ffowcs Williams and Hawkings integrals[J]. Theoretical and Applied Mechanics Letters, 2021, 11(4): 100259. doi: 10.1016/j.taml.2021.100259
    [24] ZHOU Z T, ZANG Z Y, WANG H P, et al. Far-field approximations to the derivatives of Green’s function for the Ffowcs Williams and Hawkings equation[J]. Advances in Aerodynamics, 2022, 4(1): 1–23. doi: 10.1186/s42774-022-00109-x
    [25] NAJAFI-YAZDI A, BRÈS G A, MONGEAU L. An acoustic analogy formulation for moving sources in uniformly moving media[J]. Proceedings of the Royal Society A:Mathematical, Physical and Engineering Sciences, 2011, 467(2125): 144–165. doi: 10.1098/rspa.2010.0172
    [26] IKEDA T, ENOMOTO S, YAMAMOTO K, et al. Quadrupole corrections for the permeable-surface Ffowcs Williams–Hawkings equation[J]. AIAA Journal, 2017, 55(7): 2307–2320. doi: 10.2514/1.j055328
    [27] IKEDA T, ENOMOTO S, YAMAMOTO K, et al. Quadrupole effects in the Ffowcs Williams-Hawkings equation using permeable control surface[C]//Proc of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2069
    [28] ZHOU Z T, WANG H P, ZANG Z Y, et al. A frequency-domain formulation for predicting multi-frequency noise generated by flows with periodically moving boundaries[J]. Journal of Theoretical and Computational Acoustics, 2023, 31(1): 2350001. doi: 10.1142/s2591728523500019
    [29] BRENTNER K S. Numerical algorithms for acoustic integrals with examples for rotor noise prediction[J]. AIAA Journal, 1997, 35(4): 625–630. doi: 10.2514/3.13558
    [30] INOUE O, HATAKEYAMA N. Sound generation by a two-dimensional circular cylinder in a uniform flow[J]. Journal of Fluid Mechanics, 2002, 471: 285–314. doi: 10.1017/s0022112002002124
    [31] GLOERFELT X, PÉROT F, BAILLY C, et al. Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers[J]. Journal of Sound and Vibration, 2005, 287(1-2): 129–151. doi: 10.1016/j.jsv.2004.10.047
    [32] 周志腾, 王洪平, 王士召, 等. 基于关联速度的FW-H积分四极子声源修正模型[J]. 空气动力学学报, 2020, 38(6): 1129–1135. doi: 10.7638/kqdlxxb-2020.0141

    ZHOU Z T, WANG H P, WANG S Z, et al. Quadrupole source term corrections based on correlation functions for Ffowcs Williams and Hawkings integrals[J]. Acta Aerodyna-mica Sinica, 2020, 38(6): 1129–1135. doi: 10.7638/kqdlxxb-2020.0141
  • 加载中
图(9)
计量
  • 文章访问数:  78
  • HTML全文浏览量:  27
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-15
  • 修回日期:  2023-08-06
  • 录用日期:  2023-08-21
  • 网络出版日期:  2023-12-18
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日