留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

400 km/h高速列车车下带格栅裙板区域气动噪声机理及影响因素分析

张宗发 肖新标 韩健 杨益

张宗发, 肖新标, 韩健, 等. 400 km/h高速列车车下带格栅裙板区域气动噪声机理及影响因素分析[J]. 实验流体力学, 2024, 38(1): 79-90 doi: 10.11729/syltlx20230065
引用本文: 张宗发, 肖新标, 韩健, 等. 400 km/h高速列车车下带格栅裙板区域气动噪声机理及影响因素分析[J]. 实验流体力学, 2024, 38(1): 79-90 doi: 10.11729/syltlx20230065
ZHANG Z F, XIAO X B, HAN J, et al. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90 doi: 10.11729/syltlx20230065
Citation: ZHANG Z F, XIAO X B, HAN J, et al. Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 79-90 doi: 10.11729/syltlx20230065

400 km/h高速列车车下带格栅裙板区域气动噪声机理及影响因素分析

doi: 10.11729/syltlx20230065
基金项目: 国家自然科学基金项目(U1934203)
详细信息
    作者简介:

    张宗发:(1995—),男,福建莆田人,博士研究生,研究方向:高速列车气动降噪技术。E-mail:861489889@qq.com

    通讯作者:

    E-mail:xinbiaoxiao@163.com

  • 中图分类号: U271.9

Analysis of aerodynamic noise mechanism and influencing factors at the skirt with grille under the vehicle at 400 km/h

  • 摘要: 位于高速列车车体下部区域的通风口格栅与设备舱壁面构成格栅–空腔结构,列车高速运行时,该结构的流声耦合问题较为突出,有必要深入分析其流声耦合机理。将位于车体下部区域的带格栅裙板简化为带格栅的二维空腔模型(格栅–空腔结构),采用延迟分离涡数值模型(Delayed Detached Eddy Simulation, DDES)研究其气动噪声产生机理、流场和声场特性等。研究结果表明:当列车以400 km/h速度运行时,格栅–空腔结构开口处的剪切振荡较为剧烈,特别是空腔冲击边缘附近区域;基于总声压级的空间、频域分布和湍流压力波数–频率谱,发现⊓形格栅–空腔结构的流场始终处于自激振荡的过渡状态,且各位置的总声压级和波数域上的振荡幅值始终低于V形格栅–空腔结构和半圆环形格栅–空腔结构;对目前常用的半圆环形带格栅裙板考虑通风口的出风作用后,观察到空腔内部的涡团演化明显减缓,直接导致格栅附近的总声压级大幅下降约15 dB,表明出风作用能够显著降低带裙板格栅的近场噪声。
  • 图  1  带格栅裙板和二维简化模型示意图

    Figure  1.  Sketch of skirt plate with the grille and two-dimensional model

    图  2  带格栅裙板模型局部网格示意图

    Figure  2.  Local grid sketch of skirt plate with the grille

    图  3  7.5 m处监测点声压级分布

    Figure  3.  Sound pressure level distribution at the monitoring point

    图  4  空腔底部的压力级分布

    Figure  4.  Pressure level distribution at the bottom of the cavity

    图  5  长深比为12的空腔计算域[25]

    Figure  5.  Cavity domain with a length-to-depth ratio of 12[25]

    图  6  空腔底部的压力分布

    Figure  6.  Pressure distribution at the bottom of the cavity

    图  7  压力脉动的时间历程

    Figure  7.  Time history of pressure pulsation

    图  8  格栅–空腔结构1个周期内的瞬时涡量分布

    Figure  8.  Instantaneous vorticity in a period of a grid-cavity

    图  9  监测点总声压级分布

    Figure  9.  Overall sound pressure level distribution at monitoring points

    图  10  格栅–空腔结构局部瞬时流场分布

    Figure  10.  Local instantaneous flow field of grid-cavity

    图  11  监测点位置及功率谱密度

    Figure  11.  Location and power spectral density of monitoring points

    图  12  不同流速下P2监测点的功率谱密度

    Figure  12.  Power spectral density of P2 at different flow velocities

    图  13  “V”形格栅和“⊓”形格栅构型示意图

    Figure  13.  Sketch of V-shaped grid and square grid

    图  14  监测点总声压级分布

    Figure  14.  Overall sound pressure level distribution at monitoring points

    图  15  监测点功率谱密度

    Figure  15.  Power spectral density of monitoring points

    图  16  湍流脉动压力波数–频率谱

    Figure  16.  wave number and frequency spectrum of pressure

    图  17  不同出风速度下的总声压级分布比较

    Figure  17.  Comparison of overall sound pressure level distribution at different outlet speeds

    图  18  瞬时流场涡量等值面图

    Figure  18.  Vorticity contour of instantaneous flow field

    表  1  网格参数和监测点总声压级大小对比

    Table  1.   Grid information and comparison between overall sound pressure level of monitoring points

    网格
    编号
    格栅最小
    网格尺寸/m
    空腔最大
    网格尺寸/m
    网格
    总数
    总声压级/dB
    F1$ 1 \times {10^{ - 4}} $$ 4.5 \times {10^{ - 3}} $$ 9.84 \times {10^5} $115.24
    B1$ 2 \times {10^{ - 4}} $$ 5 \times {10^{ - 3}} $$ 6.79 \times {10^5} $115.12
    C1$ 4 \times {10^{ - 4}} $$ 5 \times {10^{ - 3}} $$ 5.83 \times {10^5} $117.09
    下载: 导出CSV

    表  2  风洞实验的空腔几何参数和来流参数

    Table  2.   Cavity geometry and incoming flow parameters of wind tunnel experiment

    参数
    空腔长深比L/D5.07
    来流马赫数Ma1.5
    自由来流静温T218 K
    自由来流总压pt66.4 kPa
    雷诺数Re(基于空腔长度)1.09 × 106
    下载: 导出CSV
  • [1] THOMPSON D. Railway noise and vibration: mechanisms, modeling and means of control[M]. Oxford: Elsevier, 2009. doi: 10.1016/B978-0-08-045147-3.X0023-0
    [2] 丁叁叁, 陈大伟, 刘加利. 中国高速列车研发与展望[J]. 力学学报, 2021, 53(1): 35–50. doi: 10.6052/0459-1879-20-225

    DING S S, CHEN D W, LIU J L. Research, development and prospect of China high-speed train[J]. Chinese Journal of Theoretical and Applied Mechanics, 2021, 53(1): 35–50. doi: 10.6052/0459-1879-20-225
    [3] 袁贤浦, 苗晓丹, 袁天辰, 等. 高速列车受电弓气动噪声分析与弓头降噪研究[J]. 铁道学报, 2021, 43(12): 38–48. doi: 10.3969/j.issn.1001-8360.2021.12.00

    YUAN X P, MIAO X D, YUAN T C, et al. Aerodynamic noise analysis of high-speed train pantograph and study on noise reduction of pantograph head[J]. Journal of the China Railway Society, 2021, 43(12): 38–48. doi: 10.3969/j.issn.1001-8360.2021.12.00
    [4] KURITA T, WAKABAYASHI Y, YAMADA H, et al. Reduction of wayside noise from Shinkansen high-speed trains[J]. Journal of Mechanical Systems for Transportation and Logistics, 2011, 4(1): 1–12. doi: 10.1299/jmtl.4.1
    [5] ZHU C L, HEMIDA H, FLYNN D, et al. Numerical simulation of the slipstream and aeroacoustic field around a high-speed train[J]. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 2017, 231(6): 740–756. doi: 10.1177/0954409716641150
    [6] SASSA T, SATO T, YATSUI S. Numerical analysis of aerodynamic noise radiation from a high-speed train surface[J]. Journal of Sound and Vibration, 2001, 247(3): 407–416. doi: 10.1006/jsvi.2001.3773
    [7] LIANG X F, LIU H F, DONG T Y, et al. Aerodynamic noise characteristics of high-speed train foremost bogie section[J]. Journal of Central South University, 2020, 27(6): 1802–1813. doi: 10.1007/s11771-020-4409-8
    [8] 史佳伟, 王浩, 圣小珍. 400 km/h速度下转向架气动噪声特性研究[J]. 噪声与振动控制, 2020, 40(3): 125–130. doi: 10.3969/j.issn.1006-1355.2020.03.022

    SHI J W, WANG H, SHENG X Z. Study on aerodynamic noise characteristics of bogies at 400 km/h speed[J]. Noise and Vibration Control, 2020, 40(3): 125–130. doi: 10.3969/j.issn.1006-1355.2020.03.022
    [9] SAWAMURA Y, UDA T, KITAGAWA T. Wind tunnel study on measurement and reduction of aerodynamic noise generated from the bogie section of high-speed trains[J]. The Proceedings of the Symposium on Environmental Engineer-ing, 2018, 2018(28): 109. doi: 10.1299/jsmeenv.2018.28.109
    [10] KITAGAWA T, NAGAKURA K. Aerodynamic noise generated by shinkansen cars[J]. Journal of Sound and Vibration, 2000, 231(3): 913–924. doi: 10.1006/jsvi.1999.2639
    [11] NOH H M, CHOI S, HONG S, et al. Investigation of noise sources in high-speed trains[J]. Proceedings of the Institution of Mechanical Engineers, Part F:Journal of Rail and Rapid Transit, 2014, 228(3): 307–322. doi: 10.1177/0954409712473095
    [12] FRÉMION N, VINCENT N, JACOB M, et al. Aerodynamic noise radiated by the intercoach spacing and the bogie of a high-speed train[J]. Journal of Sound and Vibration, 2000, 231(3): 577–593. doi: 10.1006/jsvi.1999.2546
    [13] KITAGAWA T, NAGAKURA K, KURITA T. The noise generated from the lower part of shinkansen cars running at high-speed[J]. Journal of Environment and Engineering, 2012, 7(1): 66–75. doi: 10.1299/jee.7.66
    [14] SEVER A C, ROCKWELL D. Oscillations of shear flow along a slotted plate: small- and large-scale structures[J]. Journal of Fluid Mechanics, 2005, 530: 213–222. doi: 10.1017/s0022112005003721
    [15] CELIK E, SEVER A C, KIWATA T, et al. Oscillations of flow past perforated and slotted plates: attenuation via a leading-edge ramp[J]. Experiments in Fluids, 2007, 42(4): 639–651. doi: 10.1007/s00348-007-0272-8
    [16] ZHANG Y C, XU Y G, CHEN X D, et al. Excitation condition for self-sustained oscillation in flow past a louvered cavity[J]. Journal of Mechanics, 2017, 33(4): 535–544. doi: 10.1017/jmech.2017.43
    [17] 谭玉婷, 伍贻兆, 田书玲. 基于DES的二维和三维空腔流动特性研究[J]. 航空计算技术, 2010, 40(1): 67–70. doi: 10.3969/j.issn.1671-654X.2010.01.017

    TAN Y T, WU Y Z, TIAN S L. Numerical simulation of 2D/3D cavity flows using DES[J]. Aeronautical Computing Technique, 2010, 40(1): 67–70. doi: 10.3969/j.issn.1671-654X.2010.01.017
    [18] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]//Proc of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-439
    [19] YANG D G, LI J Q, FAN Z L, et al. Aerodynamic characteristics of transonic and supersonic flow over rectangular cavities[J]. Flow, Turbulence and Combustion, 2010, 84(4): 639–652. doi: 10.1007/s10494-010-9246-7
    [20] LIU Y, TONG M B. Aeroacoustic investigation of a cavity with and without doors by delayed detached eddy simulation[J]. International Journal of Aeronautical and Space Sciences, 2015, 16(1): 19–27. doi: 10.5139/ijass.2015.16.1.19
    [21] 邓锷, 杨伟超, 尹荣申, 等. 横风下高速列车驶入隧道时瞬态气动性能研究[J]. 湖南大学学报(自然科学版), 2019, 46(9): 69–78. doi: 10.16339/j.cnki.hdxbzkb.2019.09.008

    DENG E, YANG W C, YIN R S, et al. Study on transient aerodynamic performance of high-speed trains when entering into tunnel under crosswinds[J]. Journal of Hunan University (Natural Sciences), 2019, 46(9): 69–78. doi: 10.16339/j.cnki.hdxbzkb.2019.09.008
    [22] 瓮哲, 王霄, 刘超, 等. 内埋武器舱动态流动特性及降噪控制方法研究[J]. 空气动力学学报, 2022, 40(3): 169–174. doi: 10.7638/kqdlxxb-2022.0030

    WENG Z, WANG X, LIU C, et al. Unsteady flow characteristics and noise reduction control methods of a geometrically complex weapons bay[J]. Acta Aerodynamica Sinica, 2022, 40(3): 169–174. doi: 10.7638/kqdlxxb-2022.0030
    [23] ZHU J Y, HU Z W, THOMPSON D J. Flow simulation and aerodynamic noise prediction for a high-speed train wheelset[J]. International Journal of Aeroacoustics, 2014, 13(7-8): 533–552. doi: 10.1260/1475-472x.13.7-8.533
    [24] KAUFMAN L G, MACIULAITIS A, CLARK R L. Mach 0.6 to 3.0 Flow over Rectangular Cavities[R]. Air Force Wright Aeronautical Labs, AFWAL-TR-82-3112, 1983.
    [25] 杨党国. 内埋武器舱气动声学特性与噪声抑制研究[D]. 绵阳: 中国空气动力研究与发展中心, 2010.

    YANG D G. Study on aeroacoustic characteristics and noise suppression of embedded weapon cabin[D]. Mianyang: China Aerodynamics Research and Development Center, 2010.
    [26] PLENTOVICH E B, STALLINGS R L, Jr, TRACY M B. Experimental cavity pressure measurements at subsonic and transonic speeds: static-pressure results[R]. NASA Technical Paper 3358, 1993.
    [27] KIM H G, HU Z W, THOMPSON D. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104159. doi: 10.1016/j.jweia.2020.104159
    [28] 宋晓, BREARD C, 孙一峰. 开孔结构流致噪声的数值模拟和机理分析[J]. 应用声学, 2022, 41(3): 335–343. doi: 10.11684/j.issn.1000-310X.2022.03.002

    SONG X, BREARD C, SUN Y F. Numerical simulation and mechanism analysis of flow-induced noise in open-hole structure[J]. Journal of Applied Acoustics, 2022, 41(3): 335–343. doi: 10.11684/j.issn.1000-310X.2022.03.002
    [29] ZHANG Y C, XU Y G, ZHANG L L. Aerodynamic characteristic analysis of flow structure around the high-speed train equipment bay[J]. Key Engineering Materials, 2016, 693: 11–16. doi: 10.4028/www.scientific.net/kem.693.11
    [30] 邓玉清, 张楠. 孔腔脉动压力及其波数—频率谱的大涡模拟研究[J]. 船舶力学, 2017, 21(10): 1199–1209. doi: 10.3969/j.issn.1007-7294.2017.10.003

    DENG Y Q, ZHANG N. Computation of wall pressure fluctuations and wavenumber-frequency spectrum of cavity using large eddy simulation[J]. Journal of Ship Mechanics, 2017, 21(10): 1199–1209. doi: 10.3969/j.issn.1007-7294.2017.10.003
    [31] ABRAHAM B M, KEITH W L. Direct measurements of turbulent boundary layer wall pressure wavenumber-frequency spectra[J]. Journal of Fluids Engineering, 1998, 120(1): 29–39. doi: 10.1115/1.2819657
    [32] CHOI H, MOIN P. On the space-time characteristics of wall-pressure fluctuations[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(8): 1450–1460. doi: 10.1063/1.857593
    [33] FARABEE T M, CASARELLA M J. Spectral features of wall pressure fluctuations beneath turbulent boundary layers[J]. Physics of Fluids A: Fluid Dynamics, 1991, 3(10): 2410–2420. doi: 10.1063/1.858179
  • 加载中
图(18) / 表(2)
计量
  • 文章访问数:  108
  • HTML全文浏览量:  55
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-07-31
  • 录用日期:  2023-08-02
  • 网络出版日期:  2023-10-18
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日