留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

矩形喷管出口宽高比对流场与声场的影响

于水望 杜永乐 蔡晋生

于水望, 杜永乐, 蔡晋生. 矩形喷管出口宽高比对流场与声场的影响[J]. 实验流体力学, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230063
引用本文: 于水望, 杜永乐, 蔡晋生. 矩形喷管出口宽高比对流场与声场的影响[J]. 实验流体力学, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230063
YU S W, DU Y L, CAI J S. Effect of rectangular nozzle exit aspect ratioon flow field and acoustic field[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230063
Citation: YU S W, DU Y L, CAI J S. Effect of rectangular nozzle exit aspect ratioon flow field and acoustic field[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230063

矩形喷管出口宽高比对流场与声场的影响

doi: 10.11729/syltlx20230063
详细信息
    作者简介:

    于水望:(1998—),男,河南周口人,硕士研究生。研究方向:气动声学。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学航空学院(710072)。E-mail:2017300260@mail.nwpu.edu.cn

    通讯作者:

    E-mail:caijsh@nwpu.edu.cn

  • 中图分类号: V211.3

Effect of rectangular nozzle exit aspect ratioon flow field and acoustic field

  • 摘要: 为探究矩形喷管出口宽高比对喷流流场和声场的影响规律,采用DES/FW–H混合算法对出口宽高比为3和1.5的矩形喷管超声速完全膨胀喷流开展研究,分析出口宽高比对喷流流动与噪声的影响。针对多个流场变量进行对比分析,以验证数值模拟方法的可行性,发现喷管出口宽高比不同,靠近出口内壁面上的压力变化也有所不同:喷管出口宽高比越大,压力变化越快。结合已有噪声实验数据和计算数据,验证了噪声模拟的准确性。对不同出口宽高比下剪切层厚度的变化进行了分析,研究了这种变化对喷流噪声的影响,发现随着宽高比增大,剪切层厚度增大,且剪切层快速扩张位置和高频噪声源位置向上游方向移动。对比了不同宽高比下出口唇线上特定频率噪声的相速度,研究发现:喷管宽高比不同,同样频率的近场噪声有着不同的相速度,这决定了近场噪声向下游传播的最大角度;相速度对应的马赫角越大,近场噪声向下游传播的最大角度越大;宽高比增大,长轴唇线上的相速度显著降低,近场噪声向下游的辐射角度减小。
  • 图  1  不同宽高比的矩形喷管模型

    Figure  1.  Different aspect ratio rectangular nozzles corresponding to models

    图  2  边界条件的设置

    Figure  2.  Setting of boundary conditions

    图  3  宽高比为1.5的喷管垂直于y轴截面上的网格及垂直于x轴截面上的网格

    Figure  3.  Grids on the section perpendicular to the y-axis and the section perpendicular to the x-axis of the nozzle with aspect ratio of 1.5

    图  4  沿中心轴的时均流向速度变化

    Figure  4.  Time-averaged flow velocity variation along the center axis

    图  5  喷管内壁短轴平面与壁面交线上的压力分布

    Figure  5.  Pressure distribution on the intersection between the short-axis plane and the nozzle inner wall surface

    图  6  垂直于流向的截面上沿短轴和长轴分布的时均流向速度

    Figure  6.  Time-averaged flow velocity variation along the short and long axes on the cross-section perpendicular to the flow direction

    图  7  喷管出口唇线上的时均流向速度变化曲线

    Figure  7.  The time-averaged flow velocity variation curve on the nozzle exit lip line

    图  8  喷管出口附近长短轴平面上的湍动能云图

    Figure  8.  Turbulence kinetic energy contour map on the plane of the short and long axes near the nozzle exit

    图  9  喷管长短轴唇线上的湍动能变化曲线

    Figure  9.  The turbulence kinetic energy variation curve on the nozzle lip line along the short and long axes

    图  10  速度散度云图(灰色)与密度梯度云图(彩色)的叠加

    Figure  10.  Overlay of velocity divergence contour map (in gray) and density gradient contour map (in color)

    图  11  不同监测角的声压级频谱对比(对相邻声压级频谱附加20 dB)

    Figure  11.  Comparison of sound pressure level spectra at different viewing angles (with an additional 20 dB added to adjacent sound pressure level spectra)

    图  12  喷流噪声总声压级随监测点角度的变化曲线对比

    Figure  12.  Comparison of the total sound pressure level versus angle for jet noise

    图  13  剪切层涡厚度沿流向的变化曲线

    Figure  13.  The variation curve of shear layer vortex thickness along the flow direction

    图  14  长轴和短轴平面上的总声压云图

    Figure  14.  Total sound pressure contour maps on the plane of the long and short axes

    图  15  长轴和短轴唇线上的的近场噪声频谱

    Figure  15.  Near-field noise spectrum on the lip line of the long and short axes

    图  16  长轴和短轴唇线上不同频率噪声的相位随距离的变化

    Figure  16.  Phase variation of noise at different frequencies along the distance on the lip line of the long and short axes

    图  17  长轴和短轴平面上的压力梯度云图

    Figure  17.  Pressure gradient map on the long and short axis plane

    表  1  两种矩形喷管的几何参数(单位:mm)

    Table  1.   Two geometric parameters of rectangular nozzles (unit: mm)

    出口
    宽高比
    入口
    半径
    喉道宽/高出口宽/高收缩段
    长度
    扩张段
    长度
    310182.98/21.2682.98/27.6620035
    1.510158.68/31.6258.68/39.1220035
    下载: 导出CSV

    表  2  喷管出口下游4个外部块的网格参数

    Table  2.   Grid parameters of the four external blocks downstream of the nozzle outlet

    外部块网格参数
    网格数目(x向, r向, Φ向)(357, 173, 91/61)
    网格点数量24 × 106
    喷管出口处的$ \Delta x/D $0.0148
    剪切层中最小的$ \Delta r/D $0.001
    最高Sr4
    下载: 导出CSV

    表  3  完全膨胀喷流的工况设置

    Table  3.   Configuration settings for fully expanded jet flows

    编号RARNPRTTMaj
    Case 134.6511.66
    Case 21.54.6511.66
    下载: 导出CSV

    表  4  长轴和短轴唇线上不同频率噪声的统计数据

    Table  4.   Statistical data of noise at different frequencies on the lip line of the long and short axes

    SrRA长轴/短轴$ \omega $kup/c0
    0.3183L3.322.651.25
    0.3183S3.321.781.87
    0.3181.5L3.321.951.69
    0.3181.5S3.321.841.80
    0.6363L6.645.181.28
    0.6363S6.644.121.61
    0.6361.5L6.644.191.58
    0.6361.5S6.643.521.89
    下载: 导出CSV
  • [1] TSUTSUMI S, TAKAKI R, SHIMA E, et al. Generation and propagation of pressure waves from H-IIA launch vehicle at lift-off[C]//Proceedings of the 46th AIAA Aero-space Sciences Meeting and Exhibit. 2008. doi: 10.2514/6.2008-390
    [2] MARTENS S, SPYROPOULOS J T. Practical jet noise reduction for tactical aircraft[C]//Proceedings of ASME Turbo Expo 2010: Power for Land, Sea, and Air. 2010. doi: 10.1115/GT2010-23699
    [3] 邹学锋, 潘凯, 燕群, 等. 多场耦合环境下高超声速飞行器结构动强度问题综述[J]. 航空科学技术, 2020, 31(12): 3–15. doi: 10.19452/j.issn1007-5453.2020.12.001

    ZOU X F, PAN K, YAN Q, et al. Overview of dynamic strength of hypersonic vehicle structure in multi-field coupling environment[J]. Aeronautical Science & Techno-logy, 2020, 31(12): 3–15. doi: 10.19452/j.issn1007-5453.2020.12.001
    [4] CLARKSON B. Review of sonic fatigue technology[R]. NASA-CR-4587, 1994.
    [5] IGNATIUS J K, SATHIYAVAGEESWARAN S, CHAKRA-VARTHY S R. Hot-flow simulation of aeroacoustics and suppression by water injection during rocket liftoff[J]. AIAA Journal, 2015, 53(1): 235–245. doi: 10.2514/1.j053078
    [6] VAUGHN A B, NEILSEN T B, GEE K L, et al. Broadband shock-associated noise from a high-performance military aircraft[J]. The Journal of the Acoustical Society of America, 2018, 144(3): EL242–EL247. doi: 10.1121/1.5055392
    [7] 赵雯. 基于伴随方法的矩形喷口湍流混合噪声空间模态分析[J]. 航空科学技术, 2021, 32(7): 27–31. doi: 10.19452/j.issn1007-5453.2021.07.004

    ZHAO W. Spatial model analysis on rectangular jet turbulence noise with adjoint method[J]. Aeronautical Science & Technology, 2021, 32(7): 27–31. doi: 10.19452/j.issn1007-5453.2021.07.004
    [8] 闫国华, 汪霁洁. 基于多物理场的涡扇发动机尾喷口近场噪声模拟研究[J]. 航空科学技术, 2018, 29(12): 29–33. doi: 10.19452/j.issn1007-5453.2018.12.029

    YAN G H, WANG J J. Simulation study on the near field noise of turbofan engine tail nozzle based on multiphysical field[J]. Aeronautical Science & Technology, 2018, 29(12): 29–33. doi: 10.19452/j.issn1007-5453.2018.12.029
    [9] HENDERSON B. Fifty years of fluidic injection for jet noise reduction[J]. International Journal of Aeroacoustics, 2010, 9(1-2): 91–122. doi: 10.1260/1475-472x.9.1-2.91
    [10] 方昌德. 飞机推力矢量技术发展综述[J]. 航空科学技术, 1998, 9(2): 10–12.

    FANG C D. Developing status of thrust vectoring control technology[J]. Aeronautical Science and Technology, 1998, 9(2): 10–12.
    [11] COLONIUS T, LELE S K. Computational aeroacoustics: progress on nonlinear problems of sound generation[J]. Progress in Aerospace Sciences, 2004, 40(6): 345–416. doi: 10.1016/j.paerosci.2004.09.001
    [12] FREUND J B, LELE S K, MOIN P. Numerical simulation of a Mach 1.92 turbulent jet and its sound field[J]. AIAA Journal, 2000, 38(11): 2023–2031. doi: 10.2514/2.889
    [13] SHARAN N, BELLAN J R. Direct numerical simulation of high-pressure free jets[C]//Proceedings of the AIAA Scitech 2021 Forum. 2021. DOI: 10.2514/6.2021-0550
    [14] MILLER S A. Towards a comprehensive model of jet noise using an acoustic analogy and steady RANS solutions[C]//Proceedings of the 19th AIAA/CEAS Aeroacoustics Conference. 2013. doi: 10.2514/6.2013-2278
    [15] BAI B H, LI X D, CHEN H X. A semi-empirical prediction method for the fine scale turbulence mixing noise[C]//Proceedings of the 25th AIAA/CEAS Aeroacoustics Conference. 2019. doi: 10.2514/6.2019-2757
    [16] MANKBADI R R, HAYER M E, POVINELLI L A. Structure of supersonic jet flow and its radiated sound[J]. AIAA Journal, 1994, 32(5): 897–906. doi: 10.2514/3.12072
    [17] DEBONIS J R, SCOTT J N. Large-eddy simulation of a turbulent compressible round jet[J]. AIAA Journal, 2002, 40: 1346–1354. doi: 10.2514/3.15202
    [18] BODONY D, RYU J, RAY P, et al. Investigating broadband shock-associated noise of axisymmetric jets using large-eddy simulation[C]//Proceedings of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006. doi: 10.2514/6.2006-2495
    [19] MENDEZ S, SHOEYBI M, SHARMA A, et al. Large-eddy simulations of perfectly expanded supersonic jets using an unstructured solver[J]. AIAA Journal, 2012, 50(5): 1103–1118. doi: 10.2514/1.j051211
    [20] LO S C, AIKENS K M, BLAISDELL G A, et al. Numerical investigation of 3-D supersonic jet flows using large-eddy simulation[J]. International Journal of Aeroacoustics, 2012, 11(7-8): 783–812. doi: 10.1260/1475-472x.11.7-8.783
    [21] SPALART P R, JOU W H, STRELETS M, et al. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach[C]// Proc of the Advances in DNS/LES. 1997.
    [22] FFOWCS WILLIAMS J E, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society of London Series A, Mathematical and Physical Sciences, 1969, 264(1151): 321–342. doi: 10.1098/rsta.1969.0031
    [23] BRENTNER K S, FARASSAT F. Analytical comparison of the acoustic analogy and Kirchhoff formulation for moving surfaces[J]. AIAA Journal, 1998, 36(8): 1379–1386. doi: 10.2514/2.558
    [24] BRIDGES J. Acoustic measurements of rectangular nozzles with bevel[C]//Proceedings of the 18th AIAA/CEAS Aeroacoustics Conference (33rd AIAA Aeroacoustics Conference). 2012. doi: 10.2514/6.2012-2252
    [25] KANJERE K, DESVARD L, NICOLAS F, et al. Empirical modelling of noise from high aspect ratio rectangular jets[J]. International Journal of Heat and Fluid Flow, 2016, 62: 1–9. doi: 10.1016/j.ijheatfluidflow.2016.09.004
    [26] FAGHANI E, MADDAHIAN R, FAGHANI P, et al. Numerical investigation of turbulent free jet flows issuing from rectangular nozzles: the influence of small aspect ratio[J]. Archive of Applied Mechanics, 2010, 80(7): 727–745. doi: 10.1007/s00419-009-0340-z
    [27] SMAGORINSKY J. General circulation experiments with the primitive equations[J]. Monthly Weather Review, 1963, 91(3): 99–164. doi:10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2
    [28] SPALART P R, ALLMARAS S R. A one-equation turbulence model for aerodynamic flows[C]//Proceedings of the 30th Aerospace Sciences Meeting and Exhibit. 1992. doi: 10.2514/6.1992-439
    [29] VALENTICH G, UPADHYAY P, KUMAR R. Mixing characteristics of a moderate aspect ratio screeching supersonic rectangular jet[J]. Experiments in Fluids, 2016, 57(5): 71. doi: 10.1007/s00348-016-2153-5
  • 加载中
图(17) / 表(4)
计量
  • 文章访问数:  90
  • HTML全文浏览量:  30
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-08-08
  • 录用日期:  2023-08-21
  • 网络出版日期:  2023-12-18

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日