留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中/低雷诺数翼型后缘纯音噪声物理机制与主/被动控制研究综述

李勇

李勇. 中/低雷诺数翼型后缘纯音噪声物理机制与主/被动控制研究综述[J]. 实验流体力学, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230062
引用本文: 李勇. 中/低雷诺数翼型后缘纯音噪声物理机制与主/被动控制研究综述[J]. 实验流体力学, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230062
LI Y. Progress of research on airfoil trailing edge tonal noiseat low-moderate Reynolds number and its control[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230062
Citation: LI Y. Progress of research on airfoil trailing edge tonal noiseat low-moderate Reynolds number and its control[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-12 doi: 10.11729/syltlx20230062

中/低雷诺数翼型后缘纯音噪声物理机制与主/被动控制研究综述

doi: 10.11729/syltlx20230062
详细信息
    作者简介:

    李勇:(1971—),男,重庆合川人,博士,教授。研究方向:流动稳定性,气动噪声机理与控制。通信地址:浙江温州市瓯海区温州大学机电工程学院(325035)。E-mail:yli@wzu.edu.cnm

  • 中图分类号: V211.7

Progress of research on airfoil trailing edge tonal noiseat low-moderate Reynolds number and its control

  • 摘要: 基于国内外研究成果,本文总结了中/低雷诺数下翼型后缘纯音噪声的物理机制与主/被动控制的研究现状,阐述了目前该研究还需回答与解决的部分问题,并对可能的新研究思路与方法进行了展望。在物理机制方面,边界层内声反馈和后缘涡脱落被公认为中/低雷诺数下翼型后缘纯音噪声的两种主要发声机制。前者由T–S不稳定波散射噪声向上游传播、在边界层与翼型后缘之间形成,产生的纯音噪声具有典型“阶梯状”离散频谱特性;后者涡脱落机制由翼型尾流整体不稳定性引起,纯音噪声具有单一频率特性。两种发声机制之间如何竞争以及噪声频率如何选择等问题仍未完全解决。在研究方法方面,主要采用线性稳定性分析、风洞实验测量和DNS/LES数值模拟等研究方法。由于现有研究的翼型较为单一,所得结果无法满足翼型低噪声设计的需求。在噪声控制方面,被动控制方法多采用翼型前/后缘锯齿、多孔材料和柔性壁面,主动控制方法多采用表面吹/吸气和等离子体技术,但如何利用机理分析来有效抑制翼型后缘纯音噪声方面,还有较多可改进之处。
  • 图  1  翼型后缘噪声

    Figure  1.  Airfoil TE noise

    图  2  NACA 0012翼型噪声离散频率随来流速度的变化[5]

    Figure  2.  Effect of velocity on far-field vortex shedding tone frequencies, NACA 0012 full-span airfoil[5]

    图  3  形成翼型后缘阶梯状离散频率噪声的T–S波声反馈回路模型

    Figure  3.  Acoustic feedback loops in the airfoil wake

    图  4  边界层层流分离泡随雷诺数的变化及声反馈机制形成关系[26]

    Figure  4.  Schematics of flow regimes related to separation bubble development on both sides[26]

    图  5  形成翼型后缘单频纯音噪声的涡脱落机制

    Figure  5.  Schematic mechanism of vortex shedding for single frequency tonal noise generation

    图  6  翼型后缘纯音噪声研究采用的NACA 0012和SD7003翼型[19]

    Figure  6.  The tested NACA 0012 and SD7003 airfoil models[19]

    图  7  采用不同形状翼型后缘锯齿控制噪声[43]

    Figure  7.  The airfoil TE serrations applied for the airfoil TE noise control[43]

    图  8  采用翼型后缘锯齿优化结构控制后缘噪声[47]

    Figure  8.  The airfoil TE serration modifications applied for the airfoil TE noise control[47]

    图  9  采用多孔材料翼型和变形副翼控制噪声

    Figure  9.  The use of porous material and morphing TE for the airfoil TE noise control

    图  10  采用吹/吸气控制模式控制噪声[56]

    Figure  10.  The use of blowing and suction for TE noise control[56]

    图  11  等离子体噪声控制技术[59]

    Figure  11.  The use of plasma technique for TE noise control[59]

    图  12  等离子噪声控制技术[60]

    Figure  12.  The use of plasma technique for bluff TE vortex shedding noise control[60]

    图  13  风洞闭口实验段内的翼型模型及安装示意图

    Figure  13.  Airfoil model and its test setup in a closed wind tunnel

    表  1  边界层层流分离泡位置随来流雷诺数的变化[23]

    Table  1.   Laminar separation bubble (LSB) locations on the suction and pressure sides[23]

    αReSuction SidePressure Side
    14400052%c ~ 80%c84%c ~ 100%c
    18000053%c ~ 74%c82%c ~ 100%c
    21600054%c ~ 69%c80%c ~ 100%c
    25200055%c ~ 66%c82%c ~ 100%c
    28800057%c ~ 64%c85%c ~ 100%c
    下载: 导出CSV

    表  2  边界层层流分离泡位置随迎角的变化[23]

    Table  2.   Laminar separation bubble (LSB) locations on the suction and pressure sides[23]

    ReαSuction SidePressure Side
    180000070%c ~ 96%c70%c ~ 96%c
    180000253%c ~ 73%c82%c ~ 100%c
    180000435%c ~ 48%cNo separation
    18000069%c ~ 25%cNo separation
    下载: 导出CSV
  • [1] GOLUBEV V. Recent advances in acoustics of transitional airfoils with feedback-loop interactions: a review[J]. Applied Sciences, 2021, 11(3): 1057. doi: 10.3390/app11031057
    [2] LEE S, AYTON L, BERTAGNOLIO F, et al. Turbulent boundary layer trailing-edge noise: theory, computation, experiment, and application[J]. Progress in Aerospace Sciences, 2021, 126: 100737. doi: 10.1016/j.paerosci.2021.100737
    [3] WRIGHT S E. The acoustic spectrum of axial flow machines[J]. Journal of Sound and Vibration, 1976, 45(2): 165–223. doi: 10.1016/0022-460X(76)90596-4
    [4] STATISTICS MRC. UAV drones–global market outlook (2016–2022)[R]. Report ID: SMRC16075.
    [5] PATERSON R W, VOGT P G, FINK M R, et al. Vortex noise of isolated airfoils[J]. Journal of Aircraft, 1973, 10(5): 296–302. doi: 10.2514/3.60229
    [6] TAM C K W. Discrete tones of isolated airfoils[J]. The Journal of the Acoustical Society of America, 1974, 55(6): 1173–1177. doi: 10.1121/1.1914682
    [7] ZANG B, MAYER Y D, AZARPEYVAND M. An experimental investigation on the mechanism of T-S waves for a NACA 0012 aerofoil[C]//Proc of the 25th AIAA/CEAS Aeroacoustics Conference. 2019. DOI: 10.2514/6.2019-2609
    [8] LONGHOUSE R E. Vortex shedding noise of low tip speed, axial flow fans[J]. Journal of Sound and Vibration, 1977, 53(1): 25–46. doi: 10.1016/0022-460X(77)90092-X
    [9] ARBEY H, BATAILLE J. Noise generated by airfoil profiles placed in a uniform laminar flow[J]. Journal of Fluid Mechanics, 1983, 134: 33–47. doi: 10.1017/s0022112083003201
    [10] KINGAN M J, PEARSE J R. Laminar boundary layer instability noise produced by an aerofoil[J]. Journal of Sound and Vibration, 2009, 322(4-5): 808–828. doi: 10.1016/j.jsv.2008.11.043
    [11] PRÖBSTING S, YARUSEVYCH S. Airfoil flow receptivity to simulated tonal noise emissions[J]. Physics of Fluids, 2021, 33(4): 044106. doi: 10.1063/5.0045967
    [12] JAISWAL P, PASCO Y, YAKHINA G, et al. Experimental investigation of aerofoil tonal noise at low Mach number[J]. Journal of Fluid Mechanics, 2022, 932: A37. doi: 10.1017/jfm.2021.1018
    [13] GOLDSTEIN M E. The evolution of Tollmien-Sclichting waves near a leading edge[J]. Journal of Fluid Mechanics, 1983, 127: 59. doi: 10.1017/s002211208300261x
    [14] DESQUESNES G, TERRACOL M, SAGAUT P. Numerical investigation of the tone noise mechanism over laminar airfoils[J]. Journal of Fluid Mechanics, 2007, 591: 155–182. doi: 10.1017/s0022112007007896
    [15] YANG Y, PRÖBSTING S, LIU Y, et al. Effect of dual vortex shedding on airfoil tonal noise generation[J]. Physics of Fluids, 2021, 33(7): 075102. doi: 10.1063/5.0050002
    [16] ARCONDOULIS E J G, DOOLAN C J, ZANDER A C, et al. A review of trailing edge noise generated by airfoils at low to moderate Reynolds number[J]. Acoustics Australia, 2011, 38(3): 135–139.
    [17] TAM C K W, JU H B. Aerofoil tones at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2012, 690: 536–570. doi: 10.1017/jfm.2011.465
    [18] ARCONDOULIS E, DOOLAN C J, ZANDER A C, et al. An investigation of airfoil dual acoustic feedback mechanisms at low-to-moderate Reynolds number[J]. Journal of Sound and Vibration, 2019, 460: 114887. doi: 10.1016/j.jsv.2019.114887
    [19] YAKHINA G, ROGER M, MOREAU S, et al. Experimental and analytical investigation of the tonal trailing-edge noise radiated by low Reynolds number aerofoils[J]. Acoustics, 2020, 2(2): 293–329. doi: 10.3390/acoustics2020018
    [20] WU H, SANDBERG R D, MOREAU S. Stability characteristics of different aerofoil flows at Rec = 150000 and the implications for aerofoil self-noise[J]. Journal of Sound and Vibration, 506: 116152.
    [21] CHONG T P, JOSEPH P. “Ladder” structure in tonal noise generated by laminar flow around an airfoil[J]. The Journal of the Acoustical Society of America, 2012, 131(6): EL461–EL467. doi: 10.1121/1.4710952
    [22] PLOGMANN B, HERRIG A, WÜRZ W. Experimental investigations of a trailing edge noise feedback mechanism on a NACA 0012 airfoil[J]. Experiments in Fluids, 2013, 54(5): 1480. doi: 10.1007/s00348-013-1480-z
    [23] NGUYEN L, GOLUBEV V, MANKBADI R, et al. Numerical investigation of tonal trailing-edge noise radiated by low Reynolds number airfoils[J]. Applied Sciences, 2021, 11(5): 2257. doi: 10.3390/app11052257
    [24] PRÖBSTING S, SERPIERI J, SCARANO F. Experimental investigation of aerofoil tonal noise generation[J]. Journal of Fluid Mechanics, 2014, 747: 656–687. doi: 10.1017/jfm.2014.156
    [25] PRÖBSTING S, SCARANO F, MORRIS S C. Regimes of tonal noise on an airfoil at moderate Reynolds number[J]. Journal of Fluid Mechanics, 2015, 780: 407–438. doi: 10.1017/jfm.2015.475
    [26] PRÖBSTING S, YARUSEVYCH S. Laminar separation bubble development on an airfoil emitting tonal noise[J]. Journal of Fluid Mechanics, 2015, 780: 167–191. doi: 10.1017/jfm.2015.427
    [27] NASH E C, LOWSON M V, McALPINE A. Boundary-layer instability noise on aerofoils[J]. Journal of Fluid Mechanics, 1999, 382: 27–61. doi: 10.1017/s002211209800367x
    [28] HUERRE P, MONKEWITZ P A. Local and global instabilities in spatially developing flows[J]. Annual Review of Fluid Mechanics, 1990, 22: 473–537. doi: 10.1146/annurev.fl.22.010190.002353
    [29] LI Y, MING X. Oscillations of a planar impinging jet induced by a potential-core confined airfoil[J]. European Journal of Mechanics - B/Fluids, 2016, 57: 40–49. doi: 10.1016/j.euromechflu.2016.02.007
    [30] McALPINE A, NASH E C, LOWSON M V. On the generation of discrete frequency tones by the flow around an aerofoil[J]. Journal of Sound and Vibration, 1999, 222(5): 753–779. doi: 10.1006/jsvi.1998.2085
    [31] JONES L E, SANDBERG R D, SANDHAM N D. Stability and receptivity characteristics of a laminar separation bubble on an aerofoil[J]. Journal of Fluid Mechanics, 2010, 648: 257–296. doi: 10.1017/s0022112009993089
    [32] SANDBERG R D, JONES L E, SANDHAM N D, et al. Direct numerical simulations of tonal noise generated by laminar flow past airfoils[J]. Journal of Sound and Vibration, 2009, 320(4-5): 838–858. doi: 10.1016/j.jsv.2008.09.003
    [33] KHORRAMI M R, BERKMAN M E, CHOUDHARI M. Unsteady flow computations of a slat with a blunt trailing edge[J]. AIAA Journal, 2000, 38: 2050–2058. doi: 10.2514/3.14649
    [34] MAKIYA S, INASAWA A, ASAI M. Vortex shedding and noise radiation from a slat trailing edge[J]. AIAA Journal, 2010, 48(2): 502–509. doi: 10.2514/1.45777
    [35] CHONG T P, JOSEPH P F, KINGAN M J. An investigation of airfoil tonal noise at different Reynolds numbers and angles of attack[J]. Applied Acoustics, 2013, 74(1): 38–48. doi: 10.1016/j.apacoust.2012.05.016
    [36] FOSAS DE PANDO M, SCHMID P J, SIPP D. A global analysis of tonal noise in flows around aerofoils[J]. Journal of Fluid Mechanics, 2014, 754: 5–38. doi: 10.1017/jfm.2014.356
    [37] REDONNET S, SCHMIDT T G. Experimental investigation of the laminar boundary layer vortex-shedding noise by an airfoil within a closed-vein wind tunnel[J]. International Journal of Aeroacoustics, 2022, 21(8): 658–683. doi: 10.1177/1475472x221136882
    [38] ARCONDOULIS E, LIU Y, XU P W. An investigation of the facility effects on NACA0012 airfoil tonal noise[C]//Proc of the 25th AIAA/CEAS Aeroacoustics Conference, 2019. doi: 10.2514/6.2019-2607
    [39] RICCIARDI T R, ARIAS-RAMIREZ W, WOLF W R. On secondary tones arising in trailing-edge noise at moderate Reynolds numbers[J]. European Journal of Mechanics - B, 2020, 79: 54–66. doi: 10.1016/j.euromechflu.2019.08.015
    [40] RICCIARDI T R, WOLF W R, TAIRA K. Transition, intermittency and phase interference effects in airfoil secondary tones and acoustic feedback loop[J]. Journal of Fluid Mechanics, 2022, 937: A23. doi: 10.1017/jfm.2022.129
    [41] TANK J, SMITH L, SPEDDING G R. On the possibility (or lack thereof) of agreement between experiment and computation of flows over wings at moderate Reynolds number[J]. Interface Focus, 2017, 7(1): 20160076. doi: 10.1098/rsfs.2016.0076
    [42] 陈伟杰, 乔渭阳, 仝帆, 等. 前缘锯齿对边界层不稳定噪声的影响[J]. 航空学报, 2016, 37(12): 3634–3645. doi: 10.7527/S1000-6893.2016.0104

    CHEN W J, QIAO W Y, TONG F, et al. Effect of leading-edge serrations on boundary layer instability noise[J]. Acta Aeronauticaet Astronautica Sinica, 2016, 37(12): 3634–3645. doi: 10.7527/S1000-6893.2016.0104
    [43] CHONG T P, JOSEPHP P F. An experimental study of airfoil instability tonal noise with trailing edge serrations[J]. Journal of Sound and Vibration, 2013, 332(24): 6335–6358. doi: 10.1016/j.jsv.2013.06.033
    [44] CHONG T P, VATHYLAKIS A, JOSEPH P F, et al. Self-noise produced by an airfoil with nonflat plate trailing-edge serrations[J]. AIAA Journal, 2013, 51(11): 2665–2677. doi: 10.2514/1.j052344
    [45] 许影博, 李晓东. 锯齿型翼型后缘噪声控制实验研究[J]. 空气动力学学报, 2012, 30(1): 120–124. doi: 10.3969/j.issn.0258-1825.2012.01.021

    XU Y B, LI X D. An experiment study of the serrated trailing edge noise[J]. Acta Aerodynamica Sinica, 2012, 30(1): 120–124. doi: 10.3969/j.issn.0258-1825.2012.01.021
    [46] LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
    [47] HU Y S, ZHANG P J Y, WAN Z H, et al. Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle[J]. Physics of Fluids, 2022, 34(10): 105108. doi: 10.1063/5.0108565
    [48] HU Y S, WAN Z H, YE C C, et al. Noise reduction mechanisms for insert-type serrations of the NACA-0012 airfoil[J]. Journal of Fluid Mechanics, 2022, 941: A57. doi: 10.1017/jfm.2022.337
    [49] GELOT M B R, KIM J W. Effect of serrated trailing edges on aerofoil tonal noise[J]. Journal of Fluid Mechanics, 2020, 904: A30. doi: 10.1017/jfm.2020.724
    [50] FINEZ A, JACOB M, JONDEAU E, et al. Broadband noise reduction with trailing edge brushes[C]//Proc of the 16th AIAA/CEAS Aeroacoustics Conference. 2010. doi: 10.2514/6.2010-3980
    [51] HERR M, DOBRZYNSKI W. Experimental investigations in low-noise trailing edge design[J]. AIAA Journal, 2005, 43(6): 1167–1175. doi: 10.2514/1.11101
    [52] GEYER T, SARRADJ E, FRITZSCHE C. Measurement of the noise generation at the trailing edge of porous airfoils[J]. Experiments in Fluids, 2010, 48(2): 291–308. doi: 10.1007/s00348-009-0739-x
    [53] SHOWKAT ALI S A, SZOKE M, AZARPEYVAND M, et al. Trailing edge bluntness flow and noise control using porous treatments[C]//Proc of the 22nd AIAA/CEAS Aeroacoustics Conference. 2016. doi: 10.2514/6.2016-2832
    [54] AI Q, AZARPEYVAND M, LACHENAL X, et al. Aerodynamic and aeroacoustic performance of airfoils with morphing structures[J]. Wind Energy, 2016, 19(7): 1325–1339. doi: 10.1002/we.1900
    [55] WOLF A, LUTZ T, WÜRZ W, et al. Trailing edge noise reduction of wind turbine blades by active flow control[J]. Wind Energy, 2015, 18(5): 909–923. doi: 10.1002/we.1737
    [56] SZOKE M, AZARPEYVAND M. Active flow control methods for the reduction of trailing edge noise[C]//Proc of the 23rd AIAA/CEAS Aeroacoustics Conference. 2017. doi: 10.2514/6.2017-3004
    [57] RAMIREZ W A, WOLF W. The effects of suction and blowing on tonal noise generation by blunt trailing edges[C]//Proc of the 21st AIAA/CEAS Aeroacoustics Conference. 2015. doi: 10.2514/6.2015-2364
    [58] INASAWA A, NINOMIYA C, ASAI M. Suppression of tonal trailing-edge noise from an airfoil using a plasma actuator[J]. AIAA Journal, 2013, 51(7): 1695–1702. doi: 10.2514/1.j052203
    [59] INASAWA A, KAGAWA Y. Control of trailing-edge noise from airfoil using a plasma actuator[J]. Journal of Fluid Science and Technology, 2018, 13(1): JFST0003. doi: 10.1299/jfst.2018jfst0003
    [60] AL-SADAWI L, CHONG T P, KIM J H. Aerodynamic noise reduction by plasma actuators for a flat plate with blunt trailing edge[J]. Journal of Sound and Vibration, 2019, 439: 173–193. doi: 10.1016/j.jsv.2018.08.029
    [61] LI Y, GASTER M. Active control of boundary-layer instabilities[J]. Journal of Fluid Mechanics, 2006, 550: 185. doi: 10.1017/s0022112005008219
  • 加载中
图(13) / 表(2)
计量
  • 文章访问数:  154
  • HTML全文浏览量:  64
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-05-04
  • 修回日期:  2023-06-15
  • 录用日期:  2023-07-06
  • 网络出版日期:  2023-10-24

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日