留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

转盘雾化制备铝合金粉末过程中的液体铺展和粒径分布研究

李龙 彭磊 赵伟

李龙, 彭磊, 赵伟. 转盘雾化制备铝合金粉末过程中的液体铺展和粒径分布研究[J]. 实验流体力学, doi: 10.11729/syltlx20230059
引用本文: 李龙, 彭磊, 赵伟. 转盘雾化制备铝合金粉末过程中的液体铺展和粒径分布研究[J]. 实验流体力学, doi: 10.11729/syltlx20230059
LI L, PENG L, ZHAO W. Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230059
Citation: LI L, PENG L, ZHAO W. Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230059

转盘雾化制备铝合金粉末过程中的液体铺展和粒径分布研究

doi: 10.11729/syltlx20230059
基金项目: 高温气体动力学国家重点实验室青年基金项目(QN20210004)
详细信息
    作者简介:

    李龙:(1985—),男,宁夏固原人,博士,副研究员。研究方向:超声速燃烧实验技术,火箭发动机燃烧,离心雾化制备金属粉末技术。通信地址:北京市海淀区北四环西路15号中国科学院力学研究所LHD(100190)。E-mail:lilong@imech.ac.cn

    通讯作者:

    E-mail:lilong@imech.ac.cn

  • 中图分类号: TF123;TG146.2+1

Study of liquid spreading and particle size distribution during the preparation of aluminum alloy powder by rotary disc atomization

  • 摘要: 为研究高球形度、高粒径集中度、无卫星粉的增材制造用铝合金粉末制备技术,开发了一套高温转盘雾化实验装置。基于该装置,研究了铝液的流动铺展规律,发现、命名并分析了转盘表面存在的4个典型区域。采用扫描电子显微镜(SEM)分析了1060纯铝和AlSi10Mg铝合金粉末样品的微观结构。采用单峰Extreme模型,对典型实验的粉末粒径分布曲线进行了拟合分析。研究结果表明:铝液流量减小引起了分裂模式转变,进而提高了细粉率、降低了中位径。研究对比了平面、锥面和弧面等3种盘面构型对中位径的影响。分析了转盘直径和转速对1060纯铝粉中位径的影响规律,通过线性回归拟合得到了一个新的中位径理论公式。
  • 图  1  高温转盘雾化制粉实验装置示意图

    Figure  1.  Schematic diagram of high-temperature rotary disc atomi-zation powder-making experimental device

    图  2  高温转盘雾化制粉实验装置照片

    Figure  2.  Photograph of high temperature disc atomization powder making experimental device

    图  3  不同构型的转盘

    Figure  3.  Disc configuration

    图  4  转盘雾化制备球形铝粉的实验图片

    Figure  4.  Picture of spherical aluminum powder prepared by centrifugal atomization of rotating disc

    图  5  雾化实验结束后的转盘上表面照片

    Figure  5.  Photograph of the disc at the end of atomization

    图  6  转盘表面各典型区域命名

    Figure  6.  Description of the different typical areas on the disc surface

    图  7  转盘边缘锯齿形雾化点照片

    Figure  7.  Photo of the jagged atomization point on the edge of the disc

    图  8  粒径15~53 μm的粉末扫描电镜图片

    Figure  8.  Scanning electron microscope images of powders between 15-53 μm

    图  9  惰性气雾化的AlSi10Mg粉末扫描电镜图片[20]

    Figure  9.  Scanning electron microscope image of AlSi10Mg powder atomized by inert gas[20]

    图  10  粉末粒径差分分布、累积分布及Extreme函数拟合

    Figure  10.  Particle size differential distribution, cumulative distribution, and Extreme fit

    图  11  转盘离心雾化中的3种分裂模式[32]

    Figure  11.  Three disintegration modes in centrifugal atomization[32]

    图  12  不同流量下的粉末粒径分布和累积分布

    Figure  12.  Powder particle size distribution and cumulative percentage at different flow rates

    图  13  不同转速下的粉末中位径实验值与计算值对比

    Figure  13.  Comparison of experimental data and theoretical values of d50 at different rotational speeds

    图  14  不同转盘直径下的粉末中位径实验值与计算值对比

    Figure  14.  Experimental data and theoretical values of median diameter of powders with varying disc diameters

    图  15  不同转盘构型下的粉末粒径统计

    Figure  15.  Particle size statistics for different disc configurations

    图  16  1060纯铝粉中位径实验值及线性拟合曲线

    Figure  16.  Data of median diameter of 1060 pure aluminum with atomization parameters and linear fitting curve

    表  1  1060纯铝的化学成分(%)

    Table  1.   Chemical composition of 1060 pure aluminum (%)

    AlFeSiCuZnVMnMgTi
    99.60.350.250.050.050.050.030.030.03
    下载: 导出CSV

    表  2  AlSi10Mg铝合金的化学成分(%)

    Table  2.   Physical properties of 1060 pure aluminum (%)

    AlSiZnMgFeMnTiCuNiSnPb
    else9.700.600.500.500.400.100.070.050.050.05
    注:“else”表示铝合金中除其他化学成分外,其余皆为Al的含量。
    下载: 导出CSV

    表  3  1060纯铝的物理性质

    Table  3.   Physical properties of 1060 pure aluminum

    Temperature
    /K
    Density
    /(g·cm−3
    Viscosity
    /(Pa·s)
    Surface tension
    coefficient /(N·m−1
    11502.3100.926 × 10−30.843
    下载: 导出CSV

    表  4  AlSi10Mg铝合金的物理性质[31]

    Table  4.   Physical properties of AlSi10Mg alloy[31]

    Temperature
    /K
    Density
    /(g·cm−3
    Viscosity
    /(Pa·s)
    Surface tension
    coefficient/(N·m−1
    115027191.3 × 10−30.826
    下载: 导出CSV

    表  5  离心分裂模式转变临界流量

    Table  5.   Centrifugal atomization critical flow rate at different speeds

    ω/(r·min−1D/mmQ1 /(mL·s−1Q2 /(mL·s−1
    6000592.4746.93
    12000591.6330.97
    18000591.2824.28
    24000591.0820.43
    下载: 导出CSV
  • [1] NEĬKOV O D, NABOYCHENKO S, MOURACHOVA I. Handbook of non-ferrous metal powders: technologies and applications[M]. Burlington: Elsevier, 2009: 125-127.
    [2] KAUFMANN A R. Method and apparatus for making powder: US3099041[P/OL]. 1963-07-30[2023-04-28]. https://www.freepatentsonline.com/3099041.pdf.
    [3] KAUFMANN A. Production of pure, spherical powders: US3802816[P]. 1974-04-09[2023-04-28]. https://www.freepatentsonline.com/3802816.pdf
    [4] 邹宇, 廖先杰, 赖奇, 等. 3D打印用球形钛粉制备技术研究现状[J]. 中国材料进展, 2019, 38(11): 1093–1101. doi: 10.7502/j.issn.1674-3962.201808033

    ZOU Y, LIAO X J, LAI Q, et al. Research status of preparation technology of spherical titanium powder for 3D printing[J]. Materials China, 2019, 38(11): 1093–1101. doi: 10.7502/j.issn.1674-3962.201808033
    [5] SATOH T, OKIMOTO K, CHOI C J, et al. Comparison of characteristics of rapidly solidified Zn-22Al superplastic ribbon by melt spinning and the powder by centrifugal atomization[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1991, 38(1): 6–9. doi: 10.2497/jjspm.38.6
    [6] SATOH T, OKIMOTO K, NISHIDA S I. Optimum producing conditions of rapidly solidified powder using centrifugal atomization method[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1993, 40(12): 1149–1153. doi: 10.2497/jjspm.40.1149
    [7] SATOH T, OKIMOTO K, NISHIDA S I, et al. Characteristics of Al-10%Mg pre-alloyed powder and its extruded bar using centrifugal atomization process[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 1994, 41(8): 933–938. doi: 10.2497/jjspm.41.933
    [8] SATOH T, SAKAMOTO M, LIU H N. Application of rapid solidification process to high chromium cast iron and evaluation of mechanical properties and oxidation resistance of the P/M alloys[J]. Journal of the Japan Society of Powder and Powder Metallurgy, 2001, 48(12): 1119–1125. doi: 10.2497/jjspm.48.1119
    [9] ANGERS R, TREMBLAY R, DESROSIERS L, et al. Rotating disk coatings for centrifugal atomization of aluminium and magnesium alloys[J]. Canadian Metallurgical Quarterly, 1996, 35(3): 291–297. doi: 10.1016/0008-4433(96)00004-3
    [10] ANGERS R, DUBÉ D, TREMBLAY R. Inverted disk centrifugal atomization of 2024[J]. International Journal of Powder Metallurgy, 1994, 30(4): 429–434.
    [11] ANGERS R, TREMBLAY R, DUBÉ D. Formation of irregular particles during centrifugal atomization of AZ91 alloy[J]. Materials Letters, 1997, 33(1-2): 13–18. doi: 10.1016/s0167-577x(97)00072-4
    [12] LABRECQUE C, ANGERS R, TREMBLAY R, et al. Inverted disk centrifugal atomization of AZ91 magnesium alloy[J]. Canadian Metallurgical Quarterly, 1997, 36(3): 169–175. doi: 10.1016/S0008-4433(97)00007-4
    [13] 陈振华, 周多三, 王云, 等. 快速凝固Al-Zn-Mg-Cu粉末合金的研究[J]. 湖南冶金, 1991(2): 22–24.
    [14] 陈振华, 黄培云, 蒋向阳, 等. 制取快速凝固微细金属粉末的装置和原理[J]. 中国有色金属学报, 1994, 4(1): 43–49. doi: 10.3321/j.issn:1004-0609.1994.01.011
    [15] 温树德. 采用离心式雾化生产金属粉末[J]. 国外金属热处理, 1997(3): 29–32.
    [16] ÖZTÜRK S, ARSLAN F. Production of rapidly solidified metal powders by water cooled rotating disc atomisation[J]. Powder Metallurgy, 2001, 44(2): 171–176. doi: 10.1179/003258901666220
    [17] ÖZTÜRK S, ARSLAN F, ÖZTÜRK B. Effect of production parameters on cooling rates of AA2014 alloy powders produced by water jet cooled, rotating disc atomisation[J]. Powder Metallurgy, 2003, 46(4): 342–348. doi: 10.1179/003258903225008599
    [18] ÖZTÜRK S, ÖZTÜRK B, USTA G. Characteristics of rapidly solidified Cu-10%Sn alloy powders produced by water jet cooled rotating disc atomisation[J]. Powder Metallurgy, 2011, 54(5): 577–584. doi: 10.1179/1743290110y.0000000002
    [19] ESLAMIAN M, RAK J, ASHGRIZ N. Preparation of aluminum/silicon carbide metal matrix composites using centrifugal atomization[J]. Powder Technology, 2008, 184(1): 11–20. doi: 10.1016/j.powtec.2007.07.045
    [20] 刘英杰, 胡强, 赵新明, 等. 增材制造用高流动性铝合金粉末制备技术研究[J]. 稀有金属材料与工程, 2021, 50(5): 1767–1774.

    LIU Y J, HU Q, ZHAO X M, et al. Investigation of Centrifugal Atomization Technology of High Fluidity Aluminium Alloy Powder for Additive Manufacturing[J]. Rare Metal Materials and Engineering, 2021, 50(5): 1767–1774.
    [21] PLOOKPHOL T, WISUTMETHANGOON S, GONSRANG S. Influence of process parameters on SAC305 lead-free solder powder produced by centrifugal atomization[J]. Powder Technology, 2011, 214(3): 506–512. doi: 10.1016/j.powtec.2011.09.015
    [22] ZHANG L P, ZHAO Y Y. Particle size distribution of tin powder produced by centrifugal atomisation using rotating cups[J]. Powder Technology, 2017, 318: 62–67. doi: 10.1016/j.powtec.2017.05.038
    [23] ZHAO Y Y. Analysis of flow development in centrifugal atomization: part I. Film thickness of a fully spreading melt[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(5): 959–971. doi: 10.1088/0965-0393/12/5/013
    [24] ZHAO Y Y. Analysis of flow development in centrifugal atomization: part II. Disintegration of a non-fully spreading melt[J]. Modelling and Simulation in Materials Science and Engineering, 2004, 12(5): 973–983. doi: 10.1088/0965-0393/12/5/014
    [25] ZHAO Y Y. Considerations in designing a centrifugal atomiser for metal powder production[J]. Materials & Design, 2006, 27(9): 745–750. doi: 10.1016/j.matdes.2005.01.011
    [26] ALEJANDRA CEGARRA SALGES S, PIJUAN J, HERNÁNDEZ R, et al. Effect of processing parameters on copper powder produced by novel hybrid atomisation technique[J]. Powder Metallurgy, 2020, 63(2): 142–148. doi: 10.1080/00325899.2020.1724431
    [27] WANG D X, LING X, PENG H, et al. Experimental investigation of ligament formation dynamics of thin viscous liquid film at spinning disk edge[J]. Industrial & Engineering Chemistry Research, 2016, 55(34): 9267–9275. doi: 10.1021/acs.iecr.6b01428
    [28] 王东祥, 凌祥, 彭浩, 等. 转盘表面黏性薄液膜稳态流动特性数值模拟[J]. 化工学报, 2017, 68(6): 2321–2327. doi: 10.11949/j.issn.0438-1157.20170040

    WANG D X, LING X, PENG H, et al. Numerical simulation of stable flow dynamics of viscous film on spinning disk surface[J]. CIESC Journal, 2017, 68(6): 2321–2327. doi: 10.11949/j.issn.0438-1157.20170040
    [29] 王东祥, 崔政伟, 俞建峰, 等. 牛顿型黏性物料转盘离心雾化成粒特性[J]. 食品与机械, 2018, 34(10): 75–80. doi: 10.13652/j.issn.1003-5788.2018.10.016

    WANG D X, CUI Z W, YU J F, et al. Particle characteristics of centrifugal atomization by rotary disk for Newtonian viscous fluid[J]. Food & Machinery, 2018, 34(10): 75–80. doi: 10.13652/j.issn.1003-5788.2018.10.016
    [30] WANG D X, LING X, PENG H, et al. High-temperature analogy experimental investigation on dry granulating characteristic of rotating disk for waste heat utilization of molten slag[J]. Applied Thermal Engineering, 2017, 125: 846–855. doi: 10.1016/j.applthermaleng.2017.07.075
    [31] XU J X, CHEN C Y, SHEN L Y, et al. Atomization mechanism and powder morphology in laminar flow gas atomization[J]. Acta Physica Sinica, 2021, 70(14): 140201. doi: 10.7498/aps.70.20202071
    [32] HINZE J O, MILBORN H. Atomization of liquids by means of a rotating cup[J]. Journal of Applied Mechanics, 1950, 17(2): 145–153. doi: 10.1115/1.4010093
    [33] CHAMPAGNE B, ANGERS R. Fabrication of powders by the rotating electrode process[J]. International Journal of Powder Metallurgy, 1980, 16(4): 359–365.
    [34] CHAMPAGNE B, ANGERS R. REP atomization mechanisms[J]. PMI Powder Metallurgy International, 1984, 16: 125–128.
    [35] WALTON W H, PREWETT W C. The production of sprays and mists of uniform drop size by means of spinning disc type sprayers[J]. Proceedings of the Physical Society. Section B, 1949, 62(6): 341–350. doi: 10.1088/0370-1301/62/6/301
    [36] CHAMPAGNE B, ANGERS R. Size distribution of powders atomized by the rotating electrode process[J]. Modern Development in Powder Metallurgy, 1980, 12: 83–104.
    [37] DUNKLEY J J, ADERHOLD D. Centrifugal atomization of metal powders[J]. Advances in Powder Metallurgy and Particulate Materials, 2007, 1: 2–8.
    [38] TORNBERG C. Gas Efficiency in different atomization systems[J]. Advances in Powder Metallurgy & Particulate Materials, 1992, 1: 127–135.
    [39] 国为民, 陈生大, 冯涤. 等离子旋转电极法制取镍基高温合金粉末工艺的研究[J]. 航空工程与维修, 1999(5): 44–46. doi: 10.3969/j.issn.1672-0989.1999.05.019

    GUO W M, CHEN S D, FENG D. Study on process on nickel superalloy powder by the plasmarotation electrode[J]. Aviation Engineering & Maintenance, 1999(5): 44–46. doi: 10.3969/j.issn.1672-0989.1999.05.019
  • 加载中
图(16) / 表(5)
计量
  • 文章访问数:  71
  • HTML全文浏览量:  58
  • PDF下载量:  3
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-28
  • 修回日期:  2023-07-03
  • 录用日期:  2023-07-18
  • 网络出版日期:  2023-10-18

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日