留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

电弧风洞中尖前缘模型的驻点热流测量方法研究

朱新新 王辉 胡德洲 黄祯君 赵文峰

朱新新, 王辉, 胡德洲, 等. 电弧风洞中尖前缘模型的驻点热流测量方法研究[J]. 实验流体力学, doi: 10.11729/syltlx20230051
引用本文: 朱新新, 王辉, 胡德洲, 等. 电弧风洞中尖前缘模型的驻点热流测量方法研究[J]. 实验流体力学, doi: 10.11729/syltlx20230051
ZHU X X, WANG H, HU D Z, et al. Research on stagnation point heat flux measurement methods of the sharp leading edge model in arc-heated wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230051
Citation: ZHU X X, WANG H, HU D Z, et al. Research on stagnation point heat flux measurement methods of the sharp leading edge model in arc-heated wind tunnel test[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230051

电弧风洞中尖前缘模型的驻点热流测量方法研究

doi: 10.11729/syltlx20230051
详细信息
    作者简介:

    朱新新:(1988—),男,云南保山人,硕士,助理研究员。研究方向:气动热与热防护试验测试技术。通信地址:四川省绵阳市二环路南段6号15信箱504分箱(621000)。E-mail:xinxincomplex@126.com

    通讯作者:

    E-mail:hdz199075@sin.cn

  • 中图分类号: V441

Research on stagnation point heat flux measurement methods of the sharp leading edge model in arc-heated wind tunnel test

  • 摘要: 基于电弧风洞试验中尖前缘模型驻点热流的测量需求,发展了一种适用于半径R = 2 mm尖前缘模型的曲面零点量热计和相应的热流测量方法。对装配有3个曲面零点量热计和2个测压孔的前缘模型开展了辐射热流标定和电弧风洞试验考核。结果表明:新发展的曲面零点量热计能够获得典型的一维半无限大体假设模型的温升曲线,不同状态下热流稳定、线性度好,使用前需通过热流标定获取热流修正系数。测量了4个不同的电弧风洞来流状态:同一来流状态下,前缘模型上3个曲面零点量热计的热流测量值最大偏差小于10%,2个压力测点的测量值最大偏差小于5%;3个热流测点的热流平均值与数值计算结果比较最大偏差小于9%,2个压力测点的压力平均值与数值计算结果比较最大偏差小于8%。表明新发展的曲面零点量热计和热流测量方法具有较好的测量准确度,可用于半径R = 2 mm尖前缘模型的驻点热流测量。
  • 图  1  零点腔结构

    Figure  1.  Null-point cavity structure

    图  2  曲面零点量热计计算模型

    Figure  2.  Calculation model of curved null-point calorimeter

    图  3  不同厚度下的温度和热流曲线

    Figure  3.  Temperature and heat flux curve in different thicknesses

    图  4  不同入射热流下的温度曲线

    Figure  4.  Temperature curve in different incident heat flux

    图  5  不同入射热流下的计算热流曲线

    Figure  5.  Heat flux Curve calculated in different incident heat flux

    图  6  计算热流与入射热流的线性拟合

    Figure  6.  Linear fitting of heat flux calculated and incident heat flux

    图  7  前缘测热模型结构示意图

    Figure  7.  Leading edge model structure used for heat flux measurement

    图  8  前缘模型和量热计照片

    Figure  8.  The photo of Leading edge model and the calorimeter

    图  9  热流标定曲线

    Figure  9.  Heat flux calibration curve

    图  10  试验录像截图

    Figure  10.  Test video capture

    图  11  压力、温度和热流曲线

    Figure  11.  Pressure,temperature and heat flux curve

    图  12  试验状态1的马赫数

    Figure  12.  Mach number of test state 1

    图  13  上弦和下弦热流分布

    Figure  13.  Heat flux distribution along up chord and down chord

    图  14  上弦和下弦压力分布

    Figure  14.  Pressure distribution along up chord and down chord

    图  15  试验测量值与数值计算值比较

    Figure  15.  Measurement value versus numerical value

    表  1  不同状态前缘热流和压力测量值

    Table  1.   Heat flux and pressure in different states

    状态来流总压/kPa来流总焓/(kJ·kg−1)前缘热流/(MW·m−2)前缘压力/kPa
    q1q2q3p1p2
    1 1136 3220 7.87 8.75 8.82 183 168
    2 2112 3160 12.6 11.6 13.9 323 294
    3 2044 3300 13.5 12.1 14.1 319 289
    4 1159 3360 8.82 9.02 9.22 193 181
    下载: 导出CSV

    表  2  不同网格计算结果

    Table  2.   Calculation results by different grids

    网格第一层网格高度/mm前缘驻点热流/(MW·m−2)
    10000步15000步20000步
    Grid10.017.67067.62427.6489
    Grid20.0057.70827.70827.7082
    Grid30.0017.65887.65887.6588
    下载: 导出CSV
  • [1] 张友华, 陈连忠, 杨汝森, 等. 高超飞行器尖前缘材料发展及相关气动热试验[J]. 宇航材料工艺, 2012, 42(5): 1–4. doi: 10.3969/j.issn.1007-2330.2012.05.001

    ZHANG Y H, CHEN L Z, YANG R S, et al. Development and aero-heating tests of sharp leading edge in hypersonic vehicles[J]. Aerospace Materials & Technology, 2012, 42(5): 1–4. doi: 10.3969/j.issn.1007-2330.2012.05.001
    [2] MENG Z W, FAN X Q, XIONG B, et al. Investigation of aerodynamic heating in V-shaped cowl-lip of the inward turning inlet[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2019, 233(8): 2792–2801. doi: 10.1177/0954410018787137
    [3] CECERE A, SAVINO R, ALLOUIS C, et al. Heat transfer in ultra-high temperature advanced ceramics under high enthalpy arc-jet conditions[J]. International Journal of Heat and Mass Transfer, 2015, 91: 747–755. doi: 10.1016/j.ijheatmasstransfer.2015.08.029
    [4] BAO W, ZONG Y H, CHANG J T, et al. Effect of structural factors on maximum aerodynamic heat flux of strut leading surface[J]. Applied Thermal Engineering, 2014, 69(1-2): 188–198. doi: 10.1016/j.applthermaleng.2013.11.068
    [5] 朱晓军, 李锋, 欧东斌, 等. 典型部件疏导式热防护试验技术研究[J]. 实验力学, 2020, 35(4): 681–687. doi: 10.7520/1001-4888-18-186

    ZHU X J, LI F, OU D B, et al. Investigation on testing technology of typical component dredging thermal protection[J]. Journal of Experimental Mechanics, 2020, 35(4): 681–687. doi: 10.7520/1001-4888-18-186
    [6] 周书培, 王良明. 再入弹头外形防热优化设计仿真[J]. 计算机仿真, 2019, 36(1): 92–96. doi: 10.3969/j.issn.1006-9348.2019.01.019

    ZHOU S P, WANG L M. Simulation of heat-resistant optimization design for re-entry warhead shape[J]. Computer Simulation, 2019, 36(1): 92–96. doi: 10.3969/j.issn.1006-9348.2019.01.019
    [7] SHEELEY J. Arc heated wind tunnel failure prediction using artificial neural networks[C]//Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-898
    [8] 杨远剑, 陈德江, 赵文峰, 等. 电弧风洞转动部件动密封试验[J]. 空气动力学学报, 2017, 35(6): 828–831.

    YANG Y J, CHEN D J, ZHAO W F, et al. Seal complementation test for rotatable parts in arc heated wind tunnel[J]. Acta Aerodynamica Sinica, 2017, 35(6): 828–831.
    [9] NAWAZ A, GORBUNOV S, TERRAZAS-SALINAS I, et al. Investigation of slug calorimeter gap influence for plasma stream characterization[C]//Proc of the Proceedings of the 43rd AIAA Thermophysics Conference. 2012. doi: 10.2514/6.2012-3186
    [10] 朱新新, 杨庆涛, 王辉, 等. 塞块式量热计隔热结构的改进与试验分析[J]. 实验流体力学, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071

    ZHU X X, YANG Q T, WANG H, et al. Improvement of heat insulation structure in the slug calorimeter and test analysis[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 34–40. doi: 10.11729/syltlx20180071
    [11] 陈德江, 王国林, 曲杨, 等. 气动热试验中稳态热流测量技术研究[J]. 实验流体力学, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015

    CHEN D J, WANG G L, QU Y, et al. The research of the steady-state heat-flux measurement technique for aerothermodynamic experiment[J]. Experiments and Measurements in Fluid Mechanics, 2005, 19(1): 75–78. doi: 10.3969/j.issn.1672-9897.2005.01.015
    [12] ZHOU W X, WANG D, BAO W, et al. Experimental method study on heat flux measurement on sharp leading edge[J]. Proceedings of the Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2014, 228(11): 2055–2065. doi: 10.1177/0954410013513567
    [13] 许考, 陈连忠, 董永晖, 等. 电弧风洞内三维翼冷壁热流测量的归一化研究[J]. 导弹与航天运载技术, 2014(1): 17–20.

    XU K, CHEN L Z, DONG Y H, et al. Normalization study on cold-wall heat flux measurement of three dimension wings in arc wind tunnel[J]. Missiles and Space Vehicles, 2014(1): 17–20.
    [14] 张杨, 贾广森, 沙心国, 等. 尖前缘驻点热流精细化测量研究[J]. 实验流体力学, 2019, 33(6): 59–64. doi: 10.11729/syltlx20180112

    ZHANG Y, JIA G S, SHA X G, et al. Precise stagnation point heat flux measurement technique of sharp leading edges[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(6): 59–64. doi: 10.11729/syltlx20180112
    [15] 秦峰, 何川, 曾磊, 等. 驻点热流测量试验技术研究[J]. 西南交通大学学报, 2013, 48(6): 1072–1077. doi: 10.3969/j.issn.0258-2724.2013.06.016

    QIN F, HE C, ZENG L, et al. Experimental research of heat-transfer measurements on stagnation points[J]. Journal of Southwest Jiaotong University, 2013, 48(6): 1072–1077. doi: 10.3969/j.issn.0258-2724.2013.06.016
    [16] BECK J V, HURWICZ H. Effect of thermocouple cavity on heat sink temperature[J]. Journal of Heat Transfer, 1960, 82(1): 27–36. doi: 10.1115/1.3679876
    [17] LÖHLE S, BATTAGLIA J L, JULLIEN P, et al. Improvement of high heat flux measurement using a null-point calorimeter[J]. Journal of Spacecraft and Rockets, 2008, 45(1): 76–81. doi: 10.2514/1.30092
    [18] 朱新新, 王辉, 彭海波, 等. 一种高辐照度热流传感器标定装置: CN213422482U[P]. 2021-06-11.

    ZHU X X, WANG H, PENG H B, et al. Calibration device for high-irradiance heat flow sensor: CN213422482U[P]. 2021-06-11.
    [19] MURTHY A V, TSAI B K, SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology, 2000, 105(2): 293–305. doi: 10.6028/jres.105.033
    [20] 朱新新, 王辉, 杨庆涛, 等. 弧光灯热流标定系统的光学设计[J]. 光学学报, 2016, 36(11): 234–240.

    ZHU X X, WANG H, YANG Q T, et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica, 2016, 36(11): 234–240.
    [21] ASTM Committee. Standard test method for calculation of stagnation enthalpy from heat transfer theory and experimental measurements of stagnation-point heat transfer and pressure: ASTM E 637-2005[S]. United States: American Society for Testing and Materials, 2005: 1-16.
    [22] 朱新新, 杨庆涛, 陈卫, 等. 高温气流总焓测试技术综述[J]. 计测技术, 2018, 38(5): 5–11. doi: 10.11823/j.issn.1674-5795.2018.04.02

    ZHU X X, YANG Q T, CHEN W, et al. Overview of total enthalpy measurement technique for high temperature flow[J]. Metrology & Measurement Technology, 2018, 38(5): 5–11. doi: 10.11823/j.issn.1674-5795.2018.04.02
  • 加载中
图(15) / 表(2)
计量
  • 文章访问数:  121
  • HTML全文浏览量:  73
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-04-11
  • 修回日期:  2023-06-30
  • 录用日期:  2023-07-27
  • 网络出版日期:  2023-10-28

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日