留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

粗糙表面对低雷诺数翼型气动特性及流场影响实验研究

邓浩东 夏天宇 董昊 程克明

邓浩东, 夏天宇, 董昊, 等. 粗糙表面对低雷诺数翼型气动特性及流场影响实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230032
引用本文: 邓浩东, 夏天宇, 董昊, 等. 粗糙表面对低雷诺数翼型气动特性及流场影响实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20230032
DENG H D, XIA T Y, DONG H, et al. Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230032
Citation: DENG H D, XIA T Y, DONG H, et al. Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230032

粗糙表面对低雷诺数翼型气动特性及流场影响实验研究

doi: 10.11729/syltlx20230032
基金项目: 国家自然科学基金项目(11872208);国家数值风洞工程项目(0747-22665CCMY003)
详细信息
    作者简介:

    邓浩东:(1998—),男,湖南邵阳人,硕士研究生。研究方向:表面摩阻测量技术。通信地址:南京市秦淮区御道街29号南京航空航天大学明故宫校区航空学院(210016)。E-mail:17375871464@163.com

    通讯作者:

    E-mail:donghao@nuaa.edu.cn

  • 中图分类号: V211.41

Experimental study on the effect of rough surface on aerodynamic characteristics and flow field of low Reynolds number airfoil

  • 摘要: 为探究粗糙表面对低雷诺数翼型气动特性和流场的影响及作用机理,本文针对SD8020翼型开展了实验研究(Re = 4 × 104),测量了翼型的气动力,并采用荧光油膜、烟线流动可视化和热线技术观测了绕翼流场。研究结果表明:在小迎角(0°~3°)范围内,光滑翼型升力系数增长具有非线性特征,翼面层流分离泡结构的突变是导致低雷诺数下翼型升力系数非线性特征的主要原因;过小的前缘粗糙度(Sa+ = 0.00025)不会对流场产生明显影响,适当大小的前缘粗糙度(Sa+ = 0.0051、0.013)能够延缓边界层分离、加快剪切层再附,缩小甚至消除层流分离泡,显著降低气动阻力并增大升阻比,与光滑翼型相比,最大升阻比分别提升35.7%和41.4%;Sa+ = 0.013的前缘粗糙度能够减弱小迎角范围内升力系数增长的非线性特征,显著提高小迎角下的升力系数(迎角2°时提高约219.5%);粗糙前缘加快了扰动增长(表现为高频速度脉动、T–S波的增长),将壁面涡量更快地上卷至流场中,更早发展形成涡结构,涡结构可以加强法向对流,提高边界层对逆压梯度的抵抗能力,延缓分离;边界层分离之后,涡结构在分离剪切层转捩过程中起主导作用,加快流动转捩,流动提前再附。
  • 图  1  实验风洞及模型安装

    Figure  1.  Experimental wind tunnel and model installation

    图  2  ATI六分量天平

    Figure  2.  ATI six-component balance

    图  3  荧光油膜测量系统示意图

    Figure  3.  Diagram of luminescent oil-film measurement system

    图  4  烟线流动可视化实验

    Figure  4.  Smoke wire flow visualization experiment

    图  5  热线实验装置图

    Figure  5.  Hot-wire experimental setup

    图  6  光滑翼型测力结果与Selig[18]的实验结果对比

    Figure  6.  The force measurement results of smooth airfoil are compared with those of Selig[18]

    图  7  升力系数曲线

    Figure  7.  Lift coefficient curve

    图  8  阻力系数曲线

    Figure  8.  Drag coefficient curve

    图  9  升阻比曲线

    Figure  9.  Lift to drag ratio curve

    图  10  表面摩擦力线分布

    Figure  10.  Skin friction lines distribution

    图  11  时均烟线图

    Figure  11.  Time-averaged smoke wire picture

    图  12  表面摩擦力线分布

    Figure  12.  Skin friction lines distribution

    图  13  弦向瞬态烟线流动可视化(α = 2°)

    Figure  13.  The chordwise transient smoke wire flow visualization (α = 2°)

    图  14  展向瞬态烟线流动可视化(α = 2°)

    Figure  14.  The spanwise transient smoke wire flow visualization (α = 2°)

    图  15  弦向瞬态烟线流动可视化(α = 3°)

    Figure  15.  The chordwise transient smoke wire flow visualization (α = 3°)

    图  16  展向瞬态烟线流动可视化(α = 3°)

    Figure  16.  The spanwise transient smoke wire flow visualization (α = 3°)

    图  17  不同流向位置的涡量分布

    Figure  17.  Vorticity distribution at different locations

    图  18  速度脉动功率谱(α = 2°)

    Figure  18.  Velocity pulsation power spectrum (α = 2°)

    图  19  速度脉动功率谱(α = 3°)

    Figure  19.  Velocity pulsation power spectrum (α = 3°)

    图  20  α = 3°时,间隔7张图片选取的展向烟线图

    Figure  20.  The spanwise smoke wire picture was extracted at the interval of 7 pictures when α = 3°

    表  1  ATI天平各分量参数表

    Table  1.   ATI balance component parameter table

    Fx, Fy/NFz/NTx, Ty, Tz/(N·m)
    量程20601
    分辨率1/2001/1001/8000
    下载: 导出CSV

    表  2  翼型表面状态简称对应表

    Table  2.   Correspondence table for airfoil surface states

    状态简称翼面状态Sa +
    Con 0名义光滑,全翼面粗糙度Sa = 0.05 μm6.25 × 10−6
    Con 1前缘粗糙度Sa = 2 μm0.00025
    Con 2前缘粗糙度Sa = 41 μm0.0051
    Con 3前缘粗糙度Sa = 106 μm0.013
    下载: 导出CSV
  • [1] McMICHAEL C M S F, JAMES M. Micro air vehicles—toward a new dimension in flight[R]. US DAPPA/TTO Report, 1997.
    [2] SHYY W, LIAN Y, TANG J, et al. Aerodynamics of low Reynolds number flyers[M]. Cambridge: Cambridge University Press, 2008.
    [3] MUELLER T J, DeLAURIER J D. Aerodynamics of small vehicles[J]. Annual Review of Fluid Mechanics, 2003, 35: 89–111. doi: 10.1146/annurev.fluid.35.101101.161102
    [4] FENG L, WEN S. Low Reynolds number aerodynamics of micro air vehicles[J]. Advances in Mechanics, 2007, 37(2): 257–268.
    [5] BONS J P. A review of surface roughness effects in gas turbines[J]. Journal of Turbomachinery, 2010, 132(2): 021004. doi: 10.1115/1.3066315
    [6] SERDAR GENÇ M, KOCA K, AÇIKEL H H. Investigation of pre-stall flow control on wind turbine blade airfoil using roughness element[J]. Energy, 2019, 176: 320–334. doi: 10.1016/j.energy.2019.03.179
    [7] ZHOU Y, WANG Z J. Effect of surface roughness on laminar separation bubble over a wing at a low-Reynolds number[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 736. doi: 10.2514/6.2011-736
    [8] JABBARI H, ALI E, DJAVARESHKIAN M H. Acoustic and phase portrait analysis of leading-edge roughness element on laminar separation bubbles at low Reynolds number flow[J]. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2022, 236(9): 1782–1798. doi: 10.1177/09544100211044316
    [9] GROSS A, FASEL H F. Numerical investigation of passive separation control for an airfoil at low-Reynolds-number conditions[J]. AIAA Journal, 2013, 51(7): 1553–1565. doi: 10.2514/1.J051553
    [10] JOSEPH L A, FENOUIL J, BORGOLTZ A, et al. Aerodynamic effects of roughness on wind turbine blade sections[C]//Proc of the 33rd AIAA Applied Aerodynamics Conference. 2015: 3384. doi: 10.2514/6.2015-3384
    [11] RAMSAY R F, HOFFMAN M J, GREGOREK G M. Effects of grit roughness and pitch oscillations on the S809 airfoil[R]. NREL/TP-442-7817, 1995. doi: 10.2172/205563
    [12] CHAKROUN W, AL-MESRI I, AL-FAHAD S. Effect of surface roughness on the aerodynamic characteristics of a symmetrical airfoil[J]. Wind Engineering, 2004, 28(5): 547–564. doi: 10.1260/0309524043028136
    [13] ZHANG Y, IGARASHI T, HU H. Experimental investiga-tions on the performance degradation of a low-Reynolds-number airfoil with distributed leading edge roughness[C]//Proc of the 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition. 2011: 1102. doi: 10.2514/6.2011-1102
    [14] LIU T S, SULLIVAN J P. Luminescent oil-film skin-friction meter[J]. AIAA Journal, 1998, 36(8): 1460–1465. doi: 10.2514/2.538
    [15] LIU T S. Global skin friction measurements and interpre-tation[J]. Progress in Aerospace Sciences, 2019, 111: 100584. doi: 10.1016/j.paerosci.2019.100584
    [16] LEE T J, LEE C I, NONOMURA T, et al. Unsteady skin-friction field estimation based on global luminescent oil-film image analysis[J]. Journal of Visualization, 2020, 23(5): 763–772. doi: 10.1007/s12650-020-00661-y
    [17] 李周复. 风洞试验手册[M]. 北京: 航空工业出版社, 2015.
    [18] SELIG M S, GUGLIELMO J J, BROERN A P, et al. Experiments on airfoils at low Reynolds numbers[C]//Proc of the 34th Aerospace Sciences Meeting and Exhibition. 1996: 62. doi: 10.2514/6.1996-62
    [19] 白鹏, 李锋, 詹慧玲, 等. 翼型低Re数小攻角非线性非定常层流分离现象研究[J]. 中国科学 (物理学 力学 天文学), 2015, 45(2): 41–52.

    BAI P, LI F, ZHAN H L, et al. Study on nonlinear unsteady laminar separation phenomenon of airfoil with low Re number and small angle of attack[J]. Scientia Sinica (Physica, Mechanica & Astronomica), 2015, 45(2): 41–52.
    [20] YARUSEVYCH S, SULLIVAN P E, KAWALL J G. On vortex shedding from an airfoil in low-Reynolds-number flows[J]. Journal of Fluid Mechanics, 2009, 632: 245–271. doi: 10.1017/s0022112009007058
    [21] LIU C Q, YAN Y H, LU P. Physics of turbulence generation and sustenance in a boundary layer[J]. Computers & Fluids, 2014, 102: 353–384. doi: 10.1016/j.compfluid.2014.06.032
  • 加载中
图(21) / 表(2)
计量
  • 文章访问数:  190
  • HTML全文浏览量:  79
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-05-11
  • 录用日期:  2023-05-15
  • 网络出版日期:  2023-06-02

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日