留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

小攻角下锯齿尾缘翼型噪声控制与机理分析

胡亚森 张彭俊燚 庄国徽 万振华 孙德军

胡亚森, 张彭俊燚, 庄国徽, 等. 小攻角下锯齿尾缘翼型噪声控制与机理分析[J]. 实验流体力学, 2024, 38(1): 28-36 doi: 10.11729/syltlx20230031
引用本文: 胡亚森, 张彭俊燚, 庄国徽, 等. 小攻角下锯齿尾缘翼型噪声控制与机理分析[J]. 实验流体力学, 2024, 38(1): 28-36 doi: 10.11729/syltlx20230031
HU Y S, ZHANG P J Y, ZHUANG G H, et al. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36 doi: 10.11729/syltlx20230031
Citation: HU Y S, ZHANG P J Y, ZHUANG G H, et al. Noise control of serrated trailing edge airfoil under small incidence angle[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 28-36 doi: 10.11729/syltlx20230031

小攻角下锯齿尾缘翼型噪声控制与机理分析

doi: 10.11729/syltlx20230031
基金项目: 国家自然科学基金项目(92252202,12172351);国家资助博士后研究人员计划项目(GZC20232550);中国博士后科学基金面上资助项目(2022M723043);气动噪声控制重点实验室开放课题项目(ANCL20230103)
详细信息
    作者简介:

    胡亚森:(1995—),男,河南洛阳人,博士后研究员。研究方向:可压缩湍流,气动噪声控制,高精度数值算法。E-mail:ysenhu@ustc.edu.cn

    通讯作者:

    E-mail:pjyzhang@ustc.edu.cn

  • 中图分类号: O429

Noise control of serrated trailing edge airfoil under small incidence angle

  • 摘要: 受猫头鹰寂静飞行能力的启发,锯齿尾缘设计被认为是一种有效的控制湍流边界层−尾缘干涉噪声的方法。本文采用隐式大涡模拟法,详细研究了嵌入式锯齿尾缘对NACA 0012翼型绕流的近场流动和噪声特性的影响,雷诺数为$9.6 \times {10^4}$,远场马赫数为0.1631,攻角为4°,计算采用的非结构化网格具有约7000万的自由度。在实际计算时,为促进流动快速转捩,在直尾缘和锯齿尾缘算例的翼型表面均布置了锯齿形粗糙元转捩带。研究结果表明:相比于0°攻角状态,${4^ \circ }$攻角下的噪声辐射增强,主辐射方向发生偏转,在该方向上锯齿尾缘实现了约2.5 dB的降噪,且在小攻角(4°)下,锯齿也会诱导出有利于降噪的侧边涡对结构。针对壁面压力脉动的分析表明:锯齿主要改变了尾缘附近的时空关联特性,且压力场不能直接由现有针对速度场的Taylor或椭圆近似模型定量描述;此外,锯齿在抑制尾缘噪声的同时,对翼型气动性能造成了一定损失。
  • 图  1  计算几何构型示意图

    Figure  1.  Schematic diagram of the configuration for the numerical simulation

    图  2  ${ R_{ \mathrm{s}}} = 10l$位置处的噪声强度分布

    Figure  2.  The noise intensity with ${R_{\mathrm{s}}} = 10l $ from the trailing edge

    图  3  $R_{\mathrm{s}} = 10l $的圆周上声功率的指向性分布

    Figure  3.  The acoustic power directivity on a circle with $R_{\mathrm{s}} = 10l $ from the trailing edge in different ranges

    图  4  近场流动结构示意图。基于Q准则的等值面(Q = 1)识别的旋涡结构,以流向速度着色,背景为张量表征的噪声辐射

    Figure  4.  Schematic diagram of the near-field flow structure. The vortex structures are identified based on the Q criterion (Q = 1) and flooded by the flow velocity, with the background being the noise radiation characterized by the dilatation

    图  5  时均旋涡等值面与流线图

    Figure  5.  Iso-surfaces of time-averaged vortex and illustration of streamlines

    图  6  直尾缘和锯齿尾缘算例中雷诺应力分量的空间分布

    Figure  6.  The spatial distribution of Reynolds stress components for straight and serrated trailing edges

    图  7  尾缘附近的对流速度分布示意图

    Figure  7.  Schematic diagram of convection velocity near the trailing edges

    图  8  直尾缘和锯齿尾缘算例上翼面位置时空关联特性的空间分布

    Figure  8.  The spatial distribution of space-time correlations on the upper airfoil surface for straight and serrated trailing edge cases

    图  9  直尾缘和锯齿尾缘算例尾缘附近时空关联特性的空间分布

    Figure  9.  The spatial distribution of space-time correlations in vicinity of the trailing edge for straight and serrated trailing edge cases

    表  1  计算参数设置

    Table  1.   The settings of computational parameters

    算例 控制方式 攻角/$\left( ^\circ \right) $ 网格自由度 $\Delta {y^ + }$
    h0 直尾缘 0 74501080 0.87
    h6 锯齿尾缘 0 75903900 0.87
    h0α4 直尾缘 4 74501080 0.87
    h6α4 锯齿尾缘 4 75903900 0.87
    下载: 导出CSV

    表  2  气动特性对比

    Table  2.   Comparison of aerodynamic performance

    算例 h0 h6 h0α4 h6α4
    浸润面积S变化 +6% +6%
    升力L变化 +2.94%
    阻力D变化 +6.24% +6.93%
    升力系数${C_L}$变化 −2.89%
    阻力系数${C_D}$变化 +0.23% +0.87%
    摩擦阻力占比 84.07% 85.29% 72.78% 74.40%
    压差阻力占比 15.93% 14.71% 27.22% 25.60%
    下载: 导出CSV
  • [1] HOWE M S. Aerodynamic noise of a serrated trailing edge[J]. Journal of Fluids and Structures, 1991, 5(1): 33–45. doi: 10.1016/0889-9746(91)80010-B
    [2] LYU B, AZARPEYVAND M, SINAYOKO S. Prediction of noise from serrated trailing edges[J]. Journal of Fluid Mechanics, 2016, 793: 556–588. doi: 10.1017/jfm.2016.132
    [3] AMIET R K. Noise due to turbulent flow past a trailing edge[J]. Journal of Sound and Vibration, 1976, 47(3): 387–393. doi: 10.1016/0022-460X(76)90948-2
    [4] HUANG X. Theoretical model of acoustic scattering from a flat plate with serrations[J]. Journal of Fluid Mechanics, 2017, 819: 228–257. doi: 10.1017/jfm.2017.176
    [5] AYTON L J. Analytic solution for aerodynamic noise generated by plates with spanwise-varying trailing edges[J]. Journal of Fluid Mechanics, 2018, 849: 448–466. doi: 10.1017/jfm.2018.431
    [6] GRUBER M. Airfoil noise reduction by edge treatments[D]. Southampton: University of Southampton, 2012.
    [7] AVALLONE F, PRÖBSTING S, RAGNI D. Three-dimensional flow field over a trailing-edge serration and implications on broadband noise[J]. Physics of Fluids, 2016, 28(11): 117101. doi: 10.1063/1.4966633
    [8] JONES L E, SANDBERG R D. Acoustic and hydrodynamic analysis of the flow around an aerofoil with trailing-edge serrations[J]. Journal of Fluid Mechanics, 2012, 706: 295–322. doi: 10.1017/jfm.2012.254
    [9] AVALLONE F, VAN DER VELDEN W C P, RAGNI D, et al. Noise reduction mechanisms of sawtooth and combed-sawtooth trailing-edge serrations[J]. Journal of Fluid Mechanics, 2018, 848: 560–591. doi: 10.1017/jfm.2018.377
    [10] TIAN H P, LYU B S. Prediction of broadband noise from rotating blade elements with serrated trailing edges[J]. Physics of Fluids, 2022, 34(8): 085109. doi: 10.1063/5.0094423
    [11] WEI Y L, QIAN Y J, BIAN S Y, et al. Experimental study of the performance of a propeller with trailing-edge serrations[J]. Acoustics Australia, 2021, 49(2): 305–316. doi: 10.1007/s40857-021-00221-w
    [12] YANG Y N, WANG Y, LIU Y, et al. Noise reduction and aerodynamics of isolated multi-copter rotors with serrated trailing edges during forward flight[J]. Journal of Sound and Vibration, 2020, 489: 115688. doi: 10.1016/j.jsv.2020.115688
    [13] QIAO W Y, JI L, TONG F, et al. Experimental and numerical study on noise reduction mechanisms of the linear cascade with serrated trailing edge[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014: 3349. doi: 10.2514/6.2014-3349.
    [14] WANG L, LIU X M. Aeroacoustic investigation of asymmetric oblique trailing-edge serrations enlighted by owl wings[J]. Physics of Fluids, 2022, 34(1): 015113. doi: 10.1063/5.0076272
    [15] ZHOU P, ZHONG S Y, LI X T, et al. Broadband trailing edge noise reduction through porous velvet-coated serrations[J]. Physics of Fluids, 2022, 34(5): 057112. doi: 10.1063/5.0089257
    [16] HU Y S, WAN Z H, YE C C, et al. Noise reduction mechanisms for insert-type serrations of the NACA-0012 airfoil[J]. Journal of Fluid Mechanics, 2022, 941: A57. doi: 10.1017/jfm.2022.337
    [17] HU Y S, ZHANG P J Y, WAN Z H, et al. Effects of trailing-edge serration shape on airfoil noise reduction with zero incidence angle[J]. Physics of Fluids, 2022, 34(10): 105108. doi: 10.1063/5.0108565
    [18] WITHERDEN F D, FARRINGTON A M, VINCENT P E. PyFR: an open source framework for solving advection–diffusion type problems on streaming architectures using the flux reconstruction approach[J]. Computer Physics Communications, 2014, 185(11): 3028–3040. doi: 10.1016/j.cpc.2014.07.011
    [19] ZHANG P J Y, WAN Z H, SUN D J. Space-time correlations of velocity in a Mach 0.9 turbulent round jet[J]. Physics of Fluids, 2019, 31(11): 115108. doi: 10.1063/1.5128424
    [20] TAYLOR G I. The spectrum of turbulence[J]. Proceedings of the Royal Society of London Series A - Mathematical and Physical Sciences, 1938, 164(919): 476–490. doi: 10.1098/rspa.1938.0032
    [21] HE G W, ZHANG J B. Elliptic model for space-time correlations in turbulent shear flows[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2006, 73(5 Pt 2): 055303. doi: 10.1103/PhysRevE.73.055303
    [22] CHOI H, MOIN P. On the space-time characteristics of wall-pressure fluctuations[J]. Physics of Fluids A: Fluid Dynamics, 1990, 2(8): 1450–1460. doi: 10.1063/1.857593
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  55
  • HTML全文浏览量:  23
  • PDF下载量:  22
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-14
  • 修回日期:  2023-06-28
  • 录用日期:  2023-08-11
  • 网络出版日期:  2024-03-18
  • 刊出日期:  2024-02-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日