留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

400 km/h高速列车受电弓气动噪声分析

孙舒 张文敏 贾尚帅

孙舒, 张文敏, 贾尚帅. 400 km/h高速列车受电弓气动噪声分析[J]. 实验流体力学, 2024, 38(1): 1-8 doi: 10.11729/syltlx20230029
引用本文: 孙舒, 张文敏, 贾尚帅. 400 km/h高速列车受电弓气动噪声分析[J]. 实验流体力学, 2024, 38(1): 1-8 doi: 10.11729/syltlx20230029
SUN S, ZHANG W M, JIA S S. Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-8 doi: 10.11729/syltlx20230029
Citation: SUN S, ZHANG W M, JIA S S. Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 1-8 doi: 10.11729/syltlx20230029

400 km/h高速列车受电弓气动噪声分析

doi: 10.11729/syltlx20230029
详细信息
    作者简介:

    孙舒:(1986—),女,河南周口人,博士,讲师。研究方向:工程力学,振动噪声。通信地址:河北省唐山市曹妃甸新城渤海大道21号华北理工大学曹妃甸校区理学院(063210)。E-mail:sunshu1218@126.com

    通讯作者:

    E-mail:zhangwenmin666@163.com

  • 中图分类号: U270.1+6

Analysis on the aerodynamic noise of the pantograph of high-speed train at 400 km/h

  • 摘要: 为明确高速列车受电弓系统气动噪声特性及其与流场的关系,建立了受电弓全尺寸模型和缩比模型子域模型,采用大涡模拟、声扰动方程和FW–H方程预测400 km/h升弓状态下的流场和声场,并基于FW–H方程反演出声源分布,基于降阶模型分析底座湍流压力和声压能量分布。研究表明:当来流速度为400 km/h时,以受电弓整体作为声源,远场噪声标准测点的总声压级可达88.1 dB(A),在283、576 Hz附近存在明显峰值,峰值频率对应的斯特劳哈尔数Sr(特征长度取受电弓方杆当量直径41 mm)分别为0.10和0.21;底座湍流压力和声压的前2阶模态能量占比分别为4.5%和3.3%、40.9%和14.0%,且分布呈一定对称性;对于底座,在300 Hz以下频段,全尺寸模型的压力级高于缩比模型,在1 kHz以下频段,全尺寸模型的声压级高于缩比模型;在全频段内,基于全尺寸模型得到的远场测点声压级都高于缩比模型。
  • 图  1  受电弓结构

    Figure  1.  Pantograph structure

    图  2  三车编组高速列车计算域

    Figure  2.  Computational domain of three marshalling high speed train

    图  3  受电弓子域仿真模型

    Figure  3.  Subdomain simulation model of the pantograph

    图  4  声扰动区域

    Figure  4.  Acoustic perturbation region

    图  5  不同测点的声压级频谱

    Figure  5.  Spectrum of sound pressure level at different measuring points

    图  6  0.8 s时偶极子声源分布

    Figure  6.  Dipole source distribution at 0.8 s

    图  7  涡量分布

    Figure  7.  Distribution of vorticity

    图  8  总压力级与总声压级

    Figure  8.  Total pressure level and total sound pressure level

    图  9  前20阶模态能量占比

    Figure  9.  The energy proportion of the first 20 modes

    图  10  湍流压力和声压的一阶、二阶模态云图

    Figure  10.  First and second order modal contours of turbulent and sound pressures

    图  11  底座的压力级和声压级频谱

    Figure  11.  Turbulent and sound pressure level spectrum of bottom chamber

    图  12  声压级频谱

    Figure  12.  Sound pressure level spectrum

  • [1] 中国国家铁路集团有限公司. 中国高铁运营里程突破4万公里, 铁路运营总里程超15万公里[EB/OL]. (2022-01-01)[2023-03-13].http://www.china-railway.com.cn/xwzx/zhxw/202201/t20220101_119181.html.
    [2] 刘加利, 于梦阁, 田爱琴, 等. 高速列车受电弓气动噪声特性研究[J]. 机械工程学报, 2018, 54(4): 231–237. doi: 10.3901/JME.2018.04.231

    LIU J L, YU M G, TIAN A Q, et al. Study on the aerodynamic noise characteristics of the pantograph of the high-speed train[J]. Journal of Mechanical Engineering, 2018, 54(4): 231–237. doi: 10.3901/JME.2018.04.231
    [3] 袁贤浦, 苗晓丹, 袁天辰, 等. 高速列车受电弓气动噪声分析与弓头降噪研究[J]. 铁道学报, 2021, 43(12): 38–48. doi: 10.3969/j.issn.1001-8360.2021.12.005

    YUAN X P, MIAO X D, YUAN T C, et al. Aerodynamic noise analysis of high-speed train pantograph and study on noise reduction of pantograph head[J]. Journal of the China Railway Society, 2021, 43(12): 38–48. doi: 10.3969/j.issn.1001-8360.2021.12.005
    [4] 史佳伟, 葛帅, 圣小珍. 受电弓舱对受电弓区域气动噪声的影响[J]. 振动与冲击, 2021, 40(23): 216–222. doi: 10.13465/j.cnki.jvs.2021.23.029

    SHI J W, GE S, SHENG X Z. Effects of pantograph recess on aerodynamic noise in pantograph area[J]. Journal of Vibration and Shock, 2021, 40(23): 216–222. doi: 10.13465/j.cnki.jvs.2021.23.029
    [5] KIM H, HU Z W, THOMPSON D. Numerical investigation of the effect of cavity flow on high speed train pantograph aerodynamic noise[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2020, 201: 104159. doi: 10.1016/j.jweia.2020.104159
    [6] 张亚东, 张继业. 受电弓安放位置与导流罩嵌入车体高低的气动噪声特性[J]. 铁道学报, 2020, 42(8): 60–67. doi: 10.3969/j.issn.1001-8360.2020.08.008

    ZHANG Y D, ZHANG J Y. Aerodynamic noise characteristics of installation position of pantograph and fairing embedded into different height of vehicle[J]. Journal of the China Railway Society, 2020, 42(8): 60–67. doi: 10.3969/j.issn.1001-8360.2020.08.008
    [7] 姚永芳, 孙振旭, 刘文, 等. 高速列车受电弓气动噪声特性分析[J]. 北京大学学报(自然科学版), 2020, 56(3): 385–398. doi: 10.13209/j.0479-8023.2020.014

    YAO Y F, SUN Z X, LIU W, et al. Analysis of aerodynamic noise characteristics of pantograph in high speed train[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2020, 56(3): 385–398. doi: 10.13209/j.0479-8023.2020.014
    [8] 秦登, 戴志远, 周宁, 等. 受电弓下沉对其气动和声学行为的影响[J]. 中国机械工程, 2022, 33(20): 2509–2519. doi: 10.3969/j.issn.1004-132X.2022.20.015

    QIN D, DAI Z Y, ZHOU N, et al. Effects of pantograph subsidence on its aerodynamic and acoustic behaviors[J]. China Mechanical Engineering, 2022, 33(20): 2509–2519. doi: 10.3969/j.issn.1004-132X.2022.20.015
    [9] 张淑敏, 史佳伟, 圣小珍. 受电弓区域气动激励特性及其对车内噪声的影响[J]. 交通运输工程学报, 2021, 21(3): 258–268. doi: 10.19818/j.cnki.1671-1637.2021.03.018

    ZHANG S M, SHI J W, SHENG X Z. Aerodynamic excitation characteristics of pantograph area and their effects on interior noise[J]. Journal of Traffic and Transportation Engineering, 2021, 21(3): 258–268. doi: 10.19818/j.cnki.1671-1637.2021.03.018
    [10] LATORRE IGLESIAS E, THOMPSON D J, SMITH M G. Component-based model to predict aerodynamic noise from high-speed train pantographs[J]. Journal of Sound and Vibration, 2017, 394: 280–305. doi: 10.1016/j.jsv.2017.01.028
    [11] LI Q L, LI Z M, OUYANG M H, et al. Coherence and reduced order analyses of flow field and aerodynamic noise for full-scale high-speed trains pantograph[J]. Applied Acoustics, 2022, 193: 108777. doi: 10.1016/j.apacoust.2022.108777
    [12] ZHAO Y Y, YANG Z G, LI Q L, et al. Analysis of the near-field and far-field sound pressure generated by high-speed trains pantograph system[J]. Applied Acoustics, 2020, 169: 107506. doi: 10.1016/j.apacoust.2020.107506
    [13] MENTER F R. Two-equation eddy-viscosity turbulence models for engineering applications[J]. AIAA Journal, 1994, 32(8): 1598–1605. doi: 10.2514/3.12149
    [14] LESIEUR M, METAIS O. New trends in large-eddy simulations of turbulence[J]. Annual Review of Fluid Mechanics, 1996, 28: 45–82. doi: 10.1146/annurev.fl.28.010196.000401
    [15] WILLIAMS J E F, HAWKINGS D L. Sound generation by turbulence and surfaces in arbitrary motion[J]. Philosophical Transactions of the Royal Society A, Mathematical, Physical and Engineering Sciences, 1969, 264(1151): 321–342. doi: 10.1098/rsta.1969.0031
    [16] EWERT R, SCHRÖDER W. Acoustic perturbation equations based on flow decomposition via source filtering[J]. Journal of Computational Physics, 2003, 188(2): 365–398. doi: 10.1016/S0021-9991(03)00168-2
    [17] DARWISH M S, MOUKALLED F H. Normalized variable and space formulation methodology for high-resolution schemes[J]. Numerical Heat Transfer, Part B:Fundamentals, 1994, 26(1): 79–96. doi: 10.1080/10407799408914918
    [18] CAZEMIER W, VERSTAPPEN R W C P, VELDMAN A E P. Proper orthogonal decomposition and low-dimensional models for driven cavity flows[J]. Physics of Fluids, 1998, 10(7): 1685–1699. doi: 10.1063/1.869686
  • 加载中
图(12)
计量
  • 文章访问数:  101
  • HTML全文浏览量:  45
  • PDF下载量:  6
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-03-13
  • 修回日期:  2023-06-08
  • 录用日期:  2023-06-15
  • 网络出版日期:  2023-10-08

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日