留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于SODIX方法的叶片前缘噪声指向性及降噪实验研究

连健欣 陈伟杰 乔渭阳 杜军 刘元是 刘斌

连健欣, 陈伟杰, 乔渭阳, 等. 基于SODIX方法的叶片前缘噪声指向性及降噪实验研究[J]. 实验流体力学, 2024, 38(1): 67-78 doi: 10.11729/syltlx20230020
引用本文: 连健欣, 陈伟杰, 乔渭阳, 等. 基于SODIX方法的叶片前缘噪声指向性及降噪实验研究[J]. 实验流体力学, 2024, 38(1): 67-78 doi: 10.11729/syltlx20230020
LIAN J X, CHEN W J, QIAO W Y, et al. Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 67-78 doi: 10.11729/syltlx20230020
Citation: LIAN J X, CHEN W J, QIAO W Y, et al. Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array[J]. Journal of Experiments in Fluid Mechanics, 2024, 38(1): 67-78 doi: 10.11729/syltlx20230020

基于SODIX方法的叶片前缘噪声指向性及降噪实验研究

doi: 10.11729/syltlx20230020
基金项目: 国家自然科学基金项目(52276038,51936010);中国航发四川燃气涡轮研究院稳定支持项目(GJCZ-2019-0032);国家科技重大专项(2017-Ⅱ-0008-0022)
详细信息
    作者简介:

    连健欣:(1997—),男,福建南平人,博士研究生。研究方向:航空宇航科学与技术,传声器阵列测试技术。E-mail:ljxlian@foxmail.com

    通讯作者:

    E-mail:qiaowy@nwpu.edu.cn

  • 中图分类号: V211;O422.8

Experimental study on the directivity and noise reduction of the blade leading-edge noise using Inverse Method SODIX based on microphone array

  • 摘要: 以NACA 65(12)–10独立基准叶片为对象,使用线性传声器阵列和SODIX(SOurce DIrectivity modeling in the cross-spectral matriX)方法对基准叶片前缘噪声指向性分布特征及波浪前缘对叶片前缘噪声的影响进行了实验研究。开发了SODIX数据处理程序并进行了数值仿真验证,结果表明:不同指向角下计算结果的最大误差不超过0.26 dB。在半消声室内,利用由31个传声器组成的非均匀分布优化阵列,对NACA 65(12)–10独立基准叶片和仿生学叶片的前缘噪声开展了参数化声学实验。结果表明:在40°~142°指向角测量范围内,基准叶片前缘噪声指向性符合典型偶极子声源特征,峰值在130°指向角附近;随着频率升高,基准叶片前缘噪声指向性产生了显著的“波瓣”现象,频率越高,“波瓣”越多。进一步研究表明:不同波长和幅值的前缘构型都可以有效降低指向角测量范围内的前缘噪声;与波浪前缘的波长相比,波浪前缘的幅值对前缘噪声的影响更为显著,特别是在90°~120°指向角范围内,A30W20叶型的降噪量可达7.71 dB。
  • 图  1  数值仿真阵列布置

    Figure  1.  Array setup for simulation experiment

    图  2  指向性识别云图

    Figure  2.  Cloud map of directivity

    图  3  SODIX数值仿真结果与设定值的比较(声源1)

    Figure  3.  Comparison between the SODIX results and set values (Source 1)

    图  4  SODIX数值仿真结果与设定值的比较(声源2)

    Figure  4.  Comparison between the SODIX results and set values (Source 2)

    图  5  NACA 65(12)–10独立基准叶片

    Figure  5.  NACA 65(12)–10 blade

    图  6  来流湍流度

    Figure  6.  Turbulence intensity

    图  7  传声器阵列与独立叶片的相对位置

    Figure  7.  The position of microphone array and blade

    图  8  叶片安装方式

    Figure  8.  Method of blade installation

    图  9  SODIX计算结果与传声器测量结果对比

    Figure  9.  Comparison between SODIX results and measurement results

    图  10  叶片前缘噪声指向性函数参数示意图

    Figure  10.  Parameters of the directivity function of the LE noise

    图  11  SODIX指向性识别结果

    Figure  11.  Directivity results of SODIX

    图  12  尾缘噪声指向性[34]

    Figure  12.  Directivity of trailing edge noise[34]

    图  13  不同频率下SODIX指向性识别云图(u = 59.3 m/s)

    Figure  13.  Cloud map of directivity at different frequencies (u = 59.3 m/s)

    图  14  不同频率下SODIX指向性识别云图(u = 83.6 m/s)

    Figure  14.  Cloud map of directivity at different frequencies (u = 83.6 m/s)

    图  15  不同频率下叶片前缘噪声指向性识别结果

    Figure  15.  Directivity results of the LE noise

    图  16  不同来流速度下叶片前缘噪声指向性识别结果

    Figure  16.  Directivity results of the LE noise at different flow velocities

    图  17  参数定义

    Figure  17.  Parameters

    图  18  不同波浪前缘幅值的降噪效果

    Figure  18.  Noise reduction effect of different wavy amplitudes

    图  19  不同波浪前缘波长的降噪效果

    Figure  19.  Noise reduction effect of different wavy wavelengths

    表  1  扫描区域声源点数量选取

    Table  1.   the number of sound sources

    1/3倍频程/Hz声源点数量J/个
    4000及以下17
    500021
    630026
    800033
    下载: 导出CSV

    表  2  波浪前缘设计参数

    Table  2.   Design parameters of wavy LE

    叶型 A/b W/b
    基准叶型 0 0
    A10W20 0.1 0.2
    A20W20 0.2 0.2
    A30W20 0.3 0.2
    A30W10 0.3 0.1
    A30W30 0.3 0.3
    下载: 导出CSV

    表  3  不同流速下90°~120°指向角范围内的最优降噪角和降噪量

    Table  3.   The optimal noise reduction angle and amount of wavy LE blade under different incoming flow velocities in the direction angle range of 90°– 20°

    来流速度/(m·s−1) 叶型 最优降噪角/(° ) 降噪量/dB
    34.9
    A10W20 96 3.20
    A20W20 96 5.97
    A30W20 96 7.17
    59.4
    A10W20 110 3.36
    A20W20 110 5.97
    A30W20 110 6.94
    83.6
    A10W20 105 2.32
    A20W20 105 5.85
    A30W20 105 7.71
    下载: 导出CSV
  • [1] POWELL A. On the aerodynamic noise of a rigid flat plate moving at zero incidence[J]. The Journal of the Acoustical Society of America, 1959, 31(12): 1649–1653. doi: 10.1121/1.1907674
    [2] CRIGHTON D G, LEPPINGTON F G. Scattering of aerodynamic noise by a semi-infinite compliant plate[J]. Journal of Fluid Mechanics, 1970, 43(4): 721–736. doi: 10.1017/s0022112070002690
    [3] CRIGHTON D G. Radiation from vortex filament motion near a half plane[J]. Journal of Fluid Mechanics, 1972, 51(2): 357–362. doi: 10.1017/s0022112072001235
    [4] LEVINE H. Acoustical diffraction radiation[J]. Journal of the Acoustical Society of America, 1972, 52(4A): 1092. doi: 10.1121/1.1913217
    [5] HOWE M S. The generation of sound by aerodynamic sources in an inhomogeneous steady flow[J]. Journal of Fluid Mechanics, 1975, 67(3): 597–610. doi: 10.1017/s0022112075000493
    [6] HOWE M S. The influence of vortex shedding on the generation of sound by convected turbulence[J]. Journal of Fluid Mechanics, 1976, 76(4): 711–740. doi: 10.1017/s0022112076000864
    [7] CHASE D M. Noise radiated from an edge in turbulent flow[J]. AIAA Journal, 1975, 13(8): 1041–1047. doi: 10.2514/3.60502
    [8] HOWE M S. A review of the theory of trailing edge noise[J]. Journal of Sound and Vibration, 1978, 61(3): 437–465. doi: 10.1016/0022-460X(78)90391-7
    [9] MIGLIORE P, OERLEMANS S. Wind tunnel aeroacoustic tests of six airfoils for use on small wind turbines[J]. Journal of Solar Energy Engineering, 2004, 126(4): 974–985. doi: 10.1115/1.1790535
    [10] 纪良. 叶轮机宽频噪声产生机理和抑制方法的实验及数值研究[D]. 西安: 西北工业大学, 2016.

    JI L. Experimental and numerical study on mechanism and suppression method of turbo-machinery broadband noise[D]. Xi’an: Northwestern Polytechnical University, 2016.
    [11] BILLINGSLEY J, KINNS R. The acoustic telescope[J]. Journal of Sound and Vibration, 1976, 48(4): 485–510. doi: 10.1016/0022-460X(76)90552-6
    [12] KINNS R. Binaural source location[J]. Journal of Sound and Vibration, 1976, 44(2): 275–289. doi: 10.1016/0022-460x(76)90774-4
    [13] SIJTSMA P. CLEAN based on spatial source coherence[J]. International Journal of Aeroacoustics, 2007, 6(4): 357–374. doi: 10.2514/6.2007-3436
    [14] BROOKS T, HUMPHREYS W. Extension of DAMAS phased array processing for spatial coherence determination (DAMAS-C)[C]//Proc of the 12th AIAA/CEAS Aeroacous-tics Conference (27th AIAA Aeroacoustics Conference). 2006. doi: 10.2514/6.2006-2654
    [15] DOUGHERTY R. Extensions of DAMAS and benefits and limitations of deconvolution in beamforming[C]//Proc of the 11th AIAA/CEAS Aeroacoustics Conference. 2005. doi: 10.2514/6.2005-2961
    [16] SUZUKI T. L1 generalized inverse beam-forming algorithm resolving coherent/incoherent, distributed and multipole sources[J]. Journal of Sound and Vibration, 2011, 330(24): 5835–5851. doi: 10.1016/j.jsv.2011.05.021
    [17] MICHEL U, BARSIKOW B, HAVERICH B, et al. Investigation of airframe and jet noise in high-speed flight with a microphone array[C]//Proc of the 3rd AIAA/CEAS Aeroacoustics Conference. 1997. doi: 10.2514/6.1997-1596
    [18] HARKER B M, GEE K L, NEILSEN T B, et al. Phased-array measurements of full-scale military jet noise[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014. doi: 10.2514/6.2014-3069
    [19] JAEGER S, BURNSIDE N, SODERMAN P, et al. Microphone array assessment of an isolated, 26%-scale, high-fidelity landing gear[C]//Proc of the 8th AIAA/CEAS Aero-acoustics Conference & Exhibit. 2002. doi: 10.2514/6.2002-2410
    [20] QUAYLE A, DOWLING A, BABINSKY H, et al. Phased array measurements from landing gear models[C]//Proc of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). 2007. doi: 10.2514/6.2007-3463
    [21] OERLEMANS S, SIJTSMA P, LÓPEZ B M. Location and quantification of noise sources on a wind turbine[J]. Journal of Sound and Vibration, 2007, 299(4-5): 869–883. doi: 10.1016/j.jsv.2006.07.032
    [22] RAMACHANDRAN R, RAMAN G. Evaluation of various beamforming algorithms for wind turbine noise measure-ment[C]//Proc of the 49th AIAA Aerospace Sciences Meet-ing including the New Horizons Forum and Aerospace Exposi-tion. 2011. doi: 10.2514/6.2011-722
    [23] QIAO W Y, JI L, TONG F, et al. Separation and quantification of airfoil LE- and TE-noise source with microphone array[C]//Proc of the 7th Berlin Beamforming Conference. 2018: 5-8.
    [24] CHEN W J, MAO L Q, XIANG K S, et al. The application of a linear microphone array in the quantitative evaluation of the blade trailing-edge noise reduction[J]. Applied Sciences, 2021, 11(2): 572. doi: 10.3390/app11020572
    [25] SILLER H, MICHEL U, ARNOLD F. Investigation of aero-engine core-noise using a phased microphone array[C]//Proc of the 7th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2001. doi: 10.2514/6.2001-2269
    [26] BLACODON D, ÉLIAS G. Level estimation of extended acoustic sources using an array of microphones[C]//Proc of the 9th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2003. doi: 10.2514/6.2003-3199
    [27] BLACODON D, ÉLIAS G. Level estimation of extended acoustic sources using a parametric method[J]. Journal of Aircraft, 2004, 41(6): 1360–1369. doi: 10.2514/1.3053
    [28] MICHEL U, FUNKE S. Noise source analysis of an aeroengine with a new inverse method SODIX[C]//Proc of the 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference). 2008. doi: 10.2514/6.2008-2860
    [29] SILLER H, BASSETTI A, DAVIES S et al. Investigation of the noise emission of the V2500 engine of an A320 aircraft during ground tests with a line array and SODIX[C]//Proc of the 5th Berlin beamforming conference. 2014: 134.
    [30] SILLER H A, OERTWIG S. Localization and far field extrapolation of acoustic sources from wind tunnel experiments for jet engine installation noise[C]//Proc of the 2018 AIAA/CEAS Aeroacoustics Conference. 2018. doi: 10.2514/6.2018-3294
    [31] OERTWIG S, SCHUMACHER T, SILLER H A, et al. Extension of the source localization method SODIX for coherent sound sources[C]//Proc of the AIAA Aviation 2021 Forum, Virtual Event. 2021. doi: 10.2514/6.2021-2128
    [32] MORÉ J J, GARBOW B S, HILLSTROM K E. User guide for MINPACK-1[R]. ANL-80-74, 1980. doi: 10.2172/6997568
    [33] BROOKS T F, POPE D S, MARCOLINI M A. Airfoil self-noise and prediction[R]. NASA-RP-1218, 1989.
    [34] ARINA R, FERRERO A. Data-driven aeroacoustic model-ling: trailing-edge noise[C]//Proc of the AIAA Aviation 2021 Forum, Virtual Event. 2021. doi: 10.2514/6.2021-2237
    [35] AMIET R K. Acoustic radiation from an airfoil in a turbulent stream[J]. Journal of Sound and Vibration, 1975, 41(4): 407–420. doi: 10.1016/S0022-460X(75)80105-2
  • 加载中
图(19) / 表(3)
计量
  • 文章访问数:  130
  • HTML全文浏览量:  78
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-27
  • 修回日期:  2023-09-28
  • 录用日期:  2023-10-13
  • 网络出版日期:  2023-11-16
  • 刊出日期:  2024-02-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日