留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

增升装置缝翼噪声机理与控制研究进展

魏人可 刘宇

魏人可, 刘宇. 增升装置缝翼噪声机理与控制研究进展[J]. 实验流体力学, doi: 10.11729/syltlx20230017
引用本文: 魏人可, 刘宇. 增升装置缝翼噪声机理与控制研究进展[J]. 实验流体力学, doi: 10.11729/syltlx20230017
WEI R K, LIU Y. Review of slat noise mechanism and control in high-lift devices[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230017
Citation: WEI R K, LIU Y. Review of slat noise mechanism and control in high-lift devices[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230017

增升装置缝翼噪声机理与控制研究进展

doi: 10.11729/syltlx20230017
基金项目: 国家自然科学基金项目(92052105,12272163);气动噪声控制重点实验室开放课题(ANCL20200102)
详细信息
    作者简介:

    魏人可:(1993—),男,陕西西安人,博士研究生。研究方向:气动声学、气动力学。通信地址:广东省深圳市南山区学苑大道1088号南方科技大学工学院北楼1018A实验室(518055)。E-mail:11930881@mail.sustech.edu.cn

    通讯作者:

    E-mail:liuy@sustech.edu.cn

  • 中图分类号: V211;TB533+.2

Review of slat noise mechanism and control in high-lift devices

  • 摘要: 在飞机着陆过程中,增升装置中的缝翼是机体气动噪声的重要噪声源。近几十年来,国内外研究者针对缝翼噪声开展了大量风洞试验研究,对其噪声特性和机理已有深入认识,并在流动控制和降噪技术方面进行了诸多尝试。本文综述分析了二维翼型缝翼噪声风洞试验研究方面的主要进展,介绍了3种缝翼噪声成分(低频宽频噪声、高频离散纯音噪声和低频离散纯音噪声)的产生机理。缝翼噪声控制主要有3类思路:第一类是以凹腔填充为代表的整流方法,通过消除或限制回流的产生控制噪声,效果最为显著;第二类是在缝翼尖端干扰剪切层内相干结构的形成;第三类则是从工程可行性出发,通过优化缝道和缝翼结构参数或采用前缘下垂等新构型来控制噪声。未来研究需进一步借助先进测试手段和试验方案,深入认识缝翼凹腔剪切层流动的流声耦合及其与缝翼尾缘相互作用等复杂现象,以获得更为高效的噪声控制技术。
  • 图  1  飞机降噪的标准化平均历史进程[5]

    Figure  1.  Normalized average historical progress in aircraft noise reduction[5]

    图  2  增升装置的主要部件示意图

    Figure  2.  Schematic diagram of main components of high-lift device

    图  3  缝翼噪声远场噪声频谱特征

    Figure  3.  Far-field spectral characteristics of slat noise

    图  4  缝翼凹腔流动特征

    Figure  4.  Flow phenomena in the zone of the slat cove

    图  5  缝翼凹腔展向涡量[23]

    Figure  5.  Spanwise vorticity results in slat cove[23]

    图  6  Kevlar测试段和壁装式麦克风阵列

    Figure  6.  Kevlar test section and wall-mounted microphone array

    图  7  远场噪声马赫数标度律[9]

    Figure  7.  Far-field noise Mach number scaling[9]

    图  8  缝翼凹腔反馈波动瞬时涡量POD重构结果[49]

    Figure  8.  POD reconstruction results of instantaneous vorticity in slat cove[49]

    图  9  方腔模型声反馈示意图[59]

    Figure  9.  Schematic diagram of acoustic feedback in square cavity model[59]

    图  10  缝翼凹腔模型声反馈示意图

    Figure  10.  Schematic diagram of acoustic feedback of slat cavity model

    图  11  缝翼凹腔剪切层摆动过程瞬时速度分量 [29]

    Figure  11.  Instantaneous velocity of shear layer oscillation process[29]

    图  12  不同缝翼尾缘厚度的远场噪声1/3倍频程[15]

    Figure  12.  1/3 octave band SPL per foot for different slat trailing edge thicknesses[15]

    图  13  缝翼尾缘吸力面边界层与噪声压力波之间的瞬时涡量[72]

    Figure  13.  Instantaneous vorticity diagram between upper surface boundary layer and noise pressure wave[72]

    图  14  缝翼整流方法示意图[74]

    Figure  14.  Schematic diagram of slat rectification methods[74]

    图  15  2种凹腔填充方式及其远场噪声频谱对比[73]

    Figure  15.  Schematic diagram of cove filling modes and far-field noise spectrum[73]

    图  16  半填充与全填充的表面压力信号高阶谱结果对比[40]

    Figure  16.  Comparison of high order spectral results of semi-filled and fully filled surface pressure signals [40]

    图  17  有/无凹腔填充的速度幅值比较[74]

    Figure  17.  Velocity magnitude with and without cove filler[74]

    图  18  有/无凹腔填充的时均展向涡量比较[74]

    Figure  18.  Time-averaged spanwise vorticity with and without cove filler[74]

    图  19  缝翼密封装置[75]

    Figure  19.  Slat sealing device[75]

    图  20  缝翼凹腔波纹壁面结构示意[81]

    Figure  20.  Sketch of slat cove wavy wall[81]

    图  21  缝翼近场测点S1及主翼前缘测点M1与远场噪声的相干性[83]

    Figure  21.  Coherence between the near-field sensors at the slat location S1 and main-element location M1 with the far-field microphone[83]

    图  22  多孔缝翼尖端降噪效果[84]

    Figure  22.  Noise reduction effect of porous slat cusp[84]

    图  23  缝翼尖端附近的转捩条和涡流发生器[15]

    Figure  23.  Transition strip and vortex generator near slat cusp[15]

    图  24  等离子激励器布置方式[86]

    Figure  24.  Layout of plasma actuator[86]

    图  25  缝翼尾缘弯曲结构[103]

    Figure  25.  Slat with bending trailing edge[103]

    图  26  前缘下垂构型示意[108]

    Figure  26.  Schematic diagram of leading edge droop[108]

  • [1] HECKER P, YOUNG T, DE CASTRO P T, et al. Next decade European aeronautics research programme (2020-2030)[R/OL]. (2009-05-26)[2023-05-22]. http://prof.nau.edu.ua/wp-content/uploads/2019/08/Next-decade-aeronautics-research-SciCom-2019.pdf.
    [2] 孙晓峰, 周盛. 气动声学[M]. 北京: 国防工业出版社, 1994.
    [3] 毛义军, 祁大同. 叶轮机械气动噪声的研究进展[J]. 力学进展, 2009, 39(2): 189–202. doi: 10.3321/j.issn:1000-0992.2009.02.005

    MAO Y J, QI D T. Review of aerodynamic noise in turbomachinery[J]. Advances in Mechanics, 2009, 39(2): 189–202. doi: 10.3321/j.issn:1000-0992.2009.02.005
    [4] 乔渭阳. 航空发动机气动声学[M]. 北京: 北京航空航天大学出版社, 2010.
    [5] The National Sciences and Technology Council. National aeronautics research development plan [R/OL]. (2010-02)[2023-05-22]. http://www.whitehouse.gov/sites/default/files/microsites/ostp/aero-rdplan-2010.pdf.
    [6] 中华人民共和国交通运输部. 航空器型号和适航合格审定噪声规定[EB/OL]. (2017-12-12)[2023-05-22]. http://law.mot.gov.cn/LawSearch/ueditor/jsp/upload/file/20230222/1677055499961025676.pdf.
    [7] DOBRZYNSKI W. Almost 40 years of airframe noise research: what did we achieve?[J]. Journal of Aircraft, 2010, 47(2): 353–367. doi: 10.2514/1.44457
    [8] 刘沛清, 李玲. 大型飞机增升装置气动噪声研究进展[J]. 民用飞机设计与研究, 2019(1): 1–10. doi: 10.19416/j.cnki.1674-9804.2019.01.001

    LIU P Q, LI L. Development of investigation on high-lift device noise for large aircrafts[J]. Civil Aircraft Design & Research, 2019(1): 1–10. doi: 10.19416/j.cnki.1674-9804.2019.01.001
    [9] PAGANI C C Jr, SOUZA D S, MEDEIROS M A F. Slat noise: aeroacoustic beamforming in closed-section wind tunnel with numerical comparison[J]. AIAA Journal, 2016, 54(7): 2100–2115. doi: 10.2514/1.J054042
    [10] HAYES J A, HORNE W C, SODERMAN P T, et al. Airframe noise characteristics of a 4.7 percent scale DC-10 model[C]//Proc of the 3rd AIAA/CEAS Aeroacoustics Conference. 1997: 1594. doi: 10.2514/6.1997-1594
    [11] HEALY G J. Measurement and analysis of aircraft far-field aerodynamic noise[M]. Washington, D. C. : National Aero-nautics and Space Administration, 1974.
    [12] DOBRZYNSKI W, NAGAKURA K, GEHLHAR B, et al. Airframe noise studies on wings with deployed high-lift devices[C]//Proc of the 4th AIAA/CEAS Aeroacoustics Conference. 1998: 2337. doi: 10.2514/6.1998-2337
    [13] STORMS B L, HAYES J A, MORIATY P J, et al. Aeroacoustic measurements of slat noise on a three-dimensional high-lift system[C]//Proc of the 5th AIAA/CEAS Aeroacoustics Conference and Exhibit. 1999: 1957. doi: 10.2514/6.1999-1957
    [14] CHOUDHARI M M, LOCKARD D P, MACARAEG M G. Aeroacoustic experiments in the Langley Low-Turbulence Pressure Tunnel[R]. NASA-TM-211432, 2002.
    [15] MENDOZA J M, BROOKS T F, HUMPHREYS W M. Aeroacoustic measurements of a wing/slat model[C]//Proc of the 8th AIAA/CEAS Aeroacoustics Conference & Exhibit. 2002: 2604. doi: 10.2514/6.2002-2604
    [16] CHOW L C, MAU K, REMY H. Landing gears and high lift devices airframe noise research[C]//Proc of the 8th AIAA/CEAS Aeroacoustics Conference & Exhibit. 2002: 2408. doi: 10.2514/6.2002-2408
    [17] GUO Y. Slat noise modeling and prediction[J]. Journal of Sound and Vibration, 2012, 331(15): 3567–3586. doi: 10.1016/j.jsv.2012.03.016
    [18] 朱自强, 兰世隆. 民机机体噪声及其降噪研究[J]. 航空学报, 2015, 36(2): 406–421. doi: 10.7527/S1000-6893.2014.0008

    ZHU Z Q, LAN S L. Study of airframe noise and its reduction for commercial aircraft[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(2): 406–421. doi: 10.7527/S1000-6893.2014.0008
    [19] 李伟鹏. 大型客机增升装置噪声机理与噪声控制综述[J]. 空气动力学学报, 2018, 36(3): 372–384, 409. doi: 10.7638/kqdlxxb-2017.0159

    LI W P. Review of the mechanism and noise control of high-lift device noise[J]. Acta Aerodynamica Sinica, 2018, 36(3): 372–384, 409. doi: 10.7638/kqdlxxb-2017.0159
    [20] DOBRZYNSKI W, POTT-POLLENSKE M. Slat noise source studies for farfield noise prediction[C]//Proc of the 7th AIAA/CEAS Aeroacoustics Conference and Exhibit. 2001: 2158. doi: 10.2514/6.2001-2158
    [21] CHOUDHARI M M, KHORRAMI M R. Effect of three-dimensional shear-layer structures on slat cove unsteadiness[J]. AIAA Journal, 2007, 45(9): 2174–2186. doi: 10.2514/1.24812
    [22] PASCIONI K A, CATTAFESTA L N. Unsteady characte-ristics of a slat-cove flow field[J]. Physical Review Fluids, 2018, 3(3): 034607. doi: 10.1103/physrevfluids.3.034607
    [23] JENKINS L, KHORRAMI M, CHOUDHARI M. Characterization of unsteady flow structures near leading-edge slat: part I: PIV measurements[C]//Proc of the 10th AIAA/CEAS Aeroacoustics Conference. 2004: 2801. doi: 10.2514/6.2004-2801
    [24] KAEPERNICK K, KOOP L, EHRENFRIED K. Investigation of the unsteady flow field inside a leading edge slat cove[C]//Proc of the 11th AIAA/CEAS Aeroa-coustics Conference. 2005: 2813. doi: 10.2514/6.2005-2813
    [25] HENNING A, WREDE B, GEISLER R. Aeroacoustic investigation of a high-lift device by means of synchronized PIV and microphone measurements[C]//Proc of the 16th International Symposium on Applications of Laser Tech-niques to Fluid Mechanics. 2012: 1-11.
    [26] TERRACOL M, MANOHA E, LEMOINE B. Investigation of the unsteady flow and noise sources generation in a slat cove: hybrid zonal RANS/LES simulation and dedicated experiment[C]//Proc of the 20th AIAA Computational Fluid Dynamics Conference. 2011: 3203. doi: 10.2514/6.2011-3203
    [27] 刘沛清, 郭昊. 北航陆士嘉实验室气动声学风洞试验研究进展[J]. 民用飞机设计与研究, 2022(1): 1–23. doi: 10.19416/j.cnki.1674-9804.2022.01.001

    LIU P Q, GUO H. Research progress of aeroacoustics wind tunnel experiments in Beihang LU Shijia Laboratory[J]. Civil Aircraft Design & Research, 2022(1): 1–23. doi: 10.19416/j.cnki.1674-9804.2022.01.001
    [28] MURAYAMA M, YOKOKAWA Y, URA H, et al. Experimental study of slat noise from 30P30N three-element high-lift airfoil in JAXA Kevlar-wall low-speed wind tunnel[C]//Proc of the 2018 AIAA/CEAS Aeroa-coustics Conference. 2018: 3460. doi: 10.2514/6.2018-3460
    [29] PASCIONI K A. An aeroacoustic characterization of a multi-element high-lift airfoil[D]. Tallahassee, FL, USA: The Florida State University, 2017.
    [30] MURAYAMA M, NAKAKITA K, YAMAMOTO K, et al. Experimental study on slat noise from 30P30N three-element high-lift airfoil at JAXA hard-wall low-speed wind tunnel[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014: 2080. doi: 10.2514/6.2014-2080
    [31] SANDERS M P J, VENNER C H, DE SANTANA L D. Slat noise measurements in open-jet, hard-wall and hybrid wind tunnel test sections[J]. Journal of Sound and Vibration, 2023, 546: 117420. doi: 10.1016/j.jsv.2022.117420
    [32] LI L, LIU P Q, GUO H, et al. Aerodynamic and aeroacoustic experimental investigation of 30P30N high-lift configuration[J]. Applied Acoustics, 2018, 132: 43–48. doi: 10.1016/j.apacoust.2017.11.002
    [33] 李玲, 刘沛清. 增升装置多段翼型气动声学风洞实验研究[J]. 民用飞机设计与研究, 2022(1): 90–94. doi: 10.19416/j.cnki.1674-9804.2022.01.010

    LI L, LIU P Q. Experimental investigation of high-lift device multi-element configuration in aeroacoustic wind tunnel[J]. Civil Aircraft Design & Research, 2022(1): 90–94. doi: 10.19416/j.cnki.1674-9804.2022.01.010
    [34] LI W P, GUO Y H, LIU W L. On the mechanism of acoustic resonances from a leading-edge slat[J]. Aerospace Science and Technology, 2021, 113: 106711. doi: 10.1016/j.ast.2021.106711
    [35] LOCKARD D P, TURNER T L, BAHR C J, et al. Overview of aeroacoustic testing of the high-lift common research model[C]//Proc of the AIAA Aviation 2021 Forum, Virtual Event. 2021: 2113. doi: 10.2514/6.2021-2113
    [36] KOLB A, FAULHABER P, DROBIETZ R, et al. Aeroacoustic wind tunnel measurements on a 2D high-lift configuration[C]//Proc of the 13th AIAA/CEAS Aeroa-coustics Conference (28th AIAA Aeroacoustics Conference). 2007: 3447. doi: 10.2514/6.2007-3447
    [37] IMAMURA T, URA H, YOKOKAWA Y, et al. A far-field noise and near-field unsteadiness of a simplified high-lift-configuration model (slat)[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 1239. doi: 10.2514/6.2009-1239
    [38] PASCIONI K A, CATTAFESTA L N. An aeroacoustic study of a leading-edge slat: Beamforming and far field estimation using near field quantities[J]. Journal of Sound and Vibration, 2018, 429: 224–244. doi: 10.1016/j.jsv.2018.05.029
    [39] LU W S, LIU P Q, GUO H, et al. Investigation on tones due to self-excited oscillation within leading-edge slat cove at different angles of attack: frequency and intensity[J]. Aerospace Science and Technology, 2019, 91: 59–69. doi: 10.1016/j.ast.2019.04.053
    [40] KAMLIYA JAWAHAR H, ALIHAN SHOWKAT ALI S, AZARPEYVAND M, et al. Aerodynamic and aeroacoustic performance of high-lift airfoil fitted with slat cove fillers[J]. Journal of Sound and Vibration, 2020, 479: 115347. doi: 10.1016/j.jsv.2020.115347
    [41] KAMLIYA JAWAHAR H, MELONI S, CAMUSSI R, et al. Intermittent and stochastic characteristics of slat tones[J]. Physics of Fluids, 2021, 33(2): 025120. doi: 10.1063/5.0033827
    [42] ZHANG Y, RICHARDSON R, CATTAFESTA L N, et al. Investigation of the 30P30N slat flow field with passive control devices using particle image velocimetry[C]//Proc of the AIAA Aviation 2021 Forum, Virtual Event. 2021: 2116. doi: 10.2514/6.2021-2116
    [43] DO AMARAL F R, HIMENO F H, DO CARMO PAGANI C, et al. Slat noise from an MD30P30N airfoil at extreme angles of attack[J]. AIAA Journal, 2017, 56(3): 964–978. doi: 10.2514/1.J056113
    [44] 宋晓. 前缘缝翼噪声特性及其控制研究[D]. 南京: 南京航空航天大学, 2016.

    SONG X. Study on the characteristics and control methods of slat noise[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2016.
    [45] 夏天宇. 增升装置流动特性数值模拟和PIV实验研究[D]. 南京: 南京航空航天大学, 2019.

    XIA T Y. Numerical simulation and PIV experimental study on flow characteristics of high-lift device[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. doi: 10.27239/d.cnki.gnhhu.2019.000672
    [46] 焦予秦, 熊楠. 多段翼型缝翼流动非定常性的试验研究[J]. 航空学报, 2012, 33(4): 579–587.

    JIAO Y Q, XIONG N. Experimental investigation of effect of slat on unsteadiness of multi-element airfoil[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(4): 579–587.
    [47] 焦予秦, 熊楠. 多段翼型缝翼流动速度的定常和非定常特性研究[J]. 应用力学学报, 2018, 35(3): 496–502. doi: 10.11776/cjam.35.03.A014

    JIAO Y Q, XIONG N. Study on steady and unsteady characteristics of flow velocity of multi-element airfoil slat[J]. Chinese Journal of Applied Mechanics, 2018, 35(3): 496–502. doi: 10.11776/cjam.35.03.A014
    [48] 耿欣, 刘沛清, 郭昊, 等. 30P30N翼型前缘缝翼远场噪声特性实验研究[C]// 2016年度全国气动声学学术会议论文摘要集. 2016: 158-169.
    [49] WANG J S, WANG J J. Vortex dynamics for flow around the slat cove at low Reynolds numbers[J]. Journal of Fluid Mechanics, 2021, 919: A27. doi: 10.1017/jfm.2021.385
    [50] KHORRAMI M, CHOUDHARI M, JENKINS L. Characterization of unsteady flow structures near leading-edge slat: part II: 2D computations[C]//Proc of the 10th AIAA/CEAS Aeroacoustics Conference. 2004: 2802. doi: 10.2514/6.2004-2802
    [51] IMAMURA T, ENOMOTO S, YOKOKAWA Y, et al. Three-dimensional unsteady flow computations around a conventional slat of high-lift devices[J]. AIAA Journal, 2008, 46(5): 1045–1053. doi: 10.2514/1.25660
    [52] TERRACOL M, MANOHA E, LEMOINE B. Investigation of the unsteady flow and noise generation in a slat cove[J]. AIAA Journal, 2015, 54(2): 469–489. doi: 10.2514/1.J053479
    [53] PAGANI C C, SOUZA D S, MEDEIROS M A F. Experimental investigation on the effect of slat geometrical configurations on aerodynamic noise[J]. Journal of Sound and Vibration, 2017, 394: 256–279. doi: 10.1016/j.jsv.2017.01.013
    [54] HELLER H, BLISS D. The physical mechanism of flow-induced pressure fluctuations in cavities and concepts for their suppression[C]//Proc of the 2nd Aeroacoustics Conference. 1975: 491. doi: 10.2514/6.1975-491
    [55] ROSSITER J E. Wind-tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[R]. Reports and Memoranda No. 3438, 1964.
    [56] SOUZA D S, RODRÍGUEZ D, HIMENO F H T, et al. Dynamics of the large-scale structures and associated noise emission in airfoil slats[J]. Journal of Fluid Mechanics, 2019, 875: 1004–1034. doi: 10.1017/jfm.2019.496
    [57] 魏佳云. 模态分解在多尺度湍流流动中的应用与分析[D]. 上海: 上海交通大学, 2018.

    WEI J Y. Application and analysis of modal decomposition in multi-scale turbulent flow[D]. Shanghai: Shanghai Jiao Tong University, 2018. doi: 10.27307/d.cnki.gsjtu.2018.003215
    [58] 魏佳云, 李伟鹏, 许思为, 等. 基于DMD方法的缝翼低频噪声机理分析[J]. 航空学报, 2018, 39(1): 177–187. doi: 10.7527/S1000-6893.2017.121469

    WEI J Y, LI W P, XU S W, et al. Analysis of mechanism of slat low frequency noise based on zonal DMD[J]. Acta Aeronautica et Astronautica Sinica, 2018, 39(1): 177–187. doi: 10.7527/S1000-6893.2017.121469
    [59] CROOK S D, LAU T C W, KELSO R M. Three-dimensional flow within shallow, narrow cavities[J]. Journal of Fluid Mechanics, 2013, 735: 587–612. doi: 10.1017/jfm.2013.519
    [60] DECK S, LARAUFIE R. Numerical investigation of the flow dynamics past a three-element aerofoil[J]. Journal of Fluid Mechanics, 2013, 732: 401–444. doi: 10.1017/jfm.2013.363
    [61] ROCKWELL D, KNISELY C. Vortex-edge interaction: mechanisms for generating low frequency components[J]. Physics of Fluids, 1980, 23(2): 239–240. doi: 10.1063/1.862962
    [62] WAGNER J L, BERESH S J, CASPER K M, et al. Relationship between transonic cavity tones and flowfield dynamics using pulse-burst PIV[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016: 1345. doi: 10.2514/6.2016-1345
    [63] 王显圣, 杨党国, 刘俊, 等. 空腔可压缩流致噪声问题研究进展[J]. 实验流体力学, 2018, 32(3): 1–16. doi: 10.11729/syltlx20170132

    WANG X S, YANG D G, LIU J, et al. Progress of research on noise induced by compressible flow over cavities[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(3): 1–16. doi: 10.11729/syltlx20170132
    [64] MURRAY N, RASPET R, UKEILEY L. Contributions of turbulence to subsonic cavity flow wall pressures[J]. Physics of Fluids, 2011, 23(1): 015104. doi: 10.1063/1.3540682
    [65] LI L, LIU P Q, XING Y, et al. Wavelet analysis of the far-field sound pressure signals generated from a high-lift configuration[J]. AIAA Journal, 2018, 56(1): 432–437. doi: 10.2514/1.J056160
    [66] GLOERFELT X, BOGEY C, BAILLY C. Numerical evidence of mode switching in the flow-induced oscillations by a cavity[J]. International Journal of Aeroacoustics, 2003, 2(2): 193–217. doi: 10.1260/147547203322775533
    [67] 万振华, 周林, 孙德军. 方腔流致振荡及噪声的数值研究[J]. 空气动力学学报, 2012, 30(3): 291–298. doi: 10.3969/j.issn.0258-1825.2012.03.003

    WAN Z H, ZHOU L, SUN D J. Numerical investigation of flow-induced oscillations and noise from a rectangular cavity[J]. Acta Aerodynamica Sinica, 2012, 30(3): 291–298. doi: 10.3969/j.issn.0258-1825.2012.03.003
    [68] STORMS B L, ROSS J C, HORNE W C, et al. An aeroacoustic study of an unswept wing with a three-dimensional high-lift system[R]. NASA-TM-112222, 1998.
    [69] CHOUDHARI M M, LOCKARD D P. Assessment of slat noise predictions for 30P30N high-lift configuration from BANC-III workshop[C]// Proc of the 21st AIAA/CEAS Aeroacoustics Conference. 2015. doi: 10.2514/6.2015-2844
    [70] KHORRAMI M R, BERKMAN M E, CHOUDHARI M. Unsteady flow computations of a slat with a blunt trailing edge[J]. AIAA Journal, 2000, 38(11): 2050–2058. doi: 10.2514/2.892
    [71] SINGER B A, LOCKARD D P, BRENTNER K S. Computational aeroacoustic analysis of slat trailing-edge flow[J]. AIAA Journal, 2000, 38: 1558–1564. doi: 10.2514/3.14581
    [72] MAKIYA S, INASAWA A, ASAI M. Vortex shedding and noise radiation from a slat trailing edge[J]. AIAA Journal, 2010, 48(2): 502–509. doi: 10.2514/1.45777
    [73] IMAMURA T, URA H, YOKOKAWA Y, et al. Designing of slat cove filler as a noise reduction device for leading-edge slat[C]//Proc of the 13th AIAA/CEAS Aeroacoustics Conference (28th AIAA Aeroacoustics Conference). 2007: 3473. doi: 10.2514/6.2007-3473
    [74] ZHANG Y, O'NEILL A, CATTAFESTA L N, et al. Assessment of noise reduction concepts for leading-edge slat noise[C]//Proc of the 2018 AIAA/CEAS Aeroacoustics Conference. 2018: 3461. doi: 10.2514/6.2018-3461
    [75] KHORRAMI M, LOCKARD D P. Effects of geometric details on slat noise generation and propagation[C]//Proc of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006: 2664. doi: 10.2514/6.2006-2664
    [76] 王红建, 张巧, 田峻源. 缝翼尖端延伸对流场及噪声特性的影响[J]. 航空工程进展, 2021, 12(2): 52–63. doi: 10.16615/j.cnki.1674-8190.2021.02.06

    WANG H J, ZHANG Q, TIAN J Y. Effects of slat cusp extension on characteristics of flow field and noise[J]. Advances in Aeronautical Science and Engineering, 2021, 12(2): 52–63. doi: 10.16615/j.cnki.1674-8190.2021.02.06
    [77] 王文虎, BREARD C, 孙一峰. 缝翼凹腔挡板气动性能和降噪效果数值研究[J]. 民用飞机设计与研究, 2019(4): 1–6. doi: 10.19416/j.cnki.1674-9804.2019.04.001

    WANG W H, CYRILLE B, SUN Y F. Numerical study of aerodynamic and aeroacoustic performances of slat cove seals[J]. Civil Aircraft Design & Research, 2019(4): 1–6. doi: 10.19416/j.cnki.1674-9804.2019.04.001
    [78] 谭啸, 杨磊, 陈宝, 等. 缝翼封边降噪方法风洞试验研究[C]//第八届中国航空学会青年科技论坛论文集. 2018: 5.
    [79] 邓一菊, 廖振荣, 段卓毅. 前缘缝翼内型的气动设计研究[J]. 空气动力学学报, 2014, 32(3): 400–404. doi: 10.7638/kqdlxxb-2012.0137

    DENG Y J, LIAO Z R, DUAN Z Y. Aerodynamic design research on slat coves[J]. Acta Aerodynamica Sinica, 2014, 32(3): 400–404. doi: 10.7638/kqdlxxb-2012.0137
    [80] 杨小权, 丁珏, 翁培奋, 等. 大型客机增升装置前缘缝翼噪声波纹控制技术[C]//中国航空学会声学分会2020年度线上学术交流会会议摘要集. 2020: 1.doi: 10.26914/c.cnkihy.2020.017640
    [81] CHEN G Y, TANG X L, YANG X Q, et al. Noise control for high-lift devices by slat wall treatment[J]. Aerospace Science and Technology, 2021, 115: 106820. doi: 10.1016/j.ast.2021.106820
    [82] KOPIEV V F, ZAITSEV M Y, BELYAEV I V, et al. Noise reduction potential through slat hook serrations[C]//Proc of the 17th AIAA/CEAS Aeroacoustics Conference (32nd AIAA Aeroacoustics Conference). 2011: 2909. doi: 10.2514/6.2011-2909
    [83] KAMLIYA JAWAHAR H, ALIHAN SHOWKAT ALI S, AZARPEYVAND M. Serrated slat cusp for high-lift device noise reduction[J]. Physics of Fluids, 2021, 33(1): 015107. doi: 10.1063/5.0035178
    [84] WEI R K, LIU Y, YANG M Y, et al. An experimental investigation of the 30P30N multi-element high-lift airfoil with porous slat cusp[C]//Proc of the 28th AIAA/CEAS Aeroacoustics 2022 Conference. 2022: 2953. doi: 10.2514/6.2022-2953
    [85] DA SILVA G P G, EGUEA J P, CROCE J A G, et al. Slat aerodynamic noise reduction using dielectric barrier discharge plasma actuators[J]. Aerospace Science and Technology, 2020, 97: 105642. doi: 10.1016/j.ast.2019.105642
    [86] CHEN P. Identification and attenuation of slat noise[D]. Southampton, South East England, UK: University of Southampton, 2012.
    [87] DA SILVA G P G, EGUEA J P, CROCE J A G, et al. High-lift noise reduction using plasma actuators[C]// Proc of the 32nd Congress of the International Council of the Aeronautical Science. 2021.
    [88] 黄华. 基于前缘射流的缝翼噪声控制研究[D]. 上海: 上海交通大学, 2013.

    HUANG H. Slat noise suppression with mass injection[D]. Shanghai: Shanghai Jiao Tong University, 2013.
    [89] 黄华, 李伟鹏, 王福新. 基于前缘平行射流的缝翼噪声控制研究[J]. 空气动力学学报, 2014, 32(6): 854–860. doi: 10.7638/kqdlxxb-2012.0217

    HUANG H, LI W P, WANG F X. Slat noise suppression based on upstream parallel mass injection[J]. Acta Aerodynamica Sinica, 2014, 32(6): 854–860. doi: 10.7638/kqdlxxb-2012.0217
    [90] 刘沛清, 崔燕香, 屈秋林, 等. 多段翼型前缘缝翼吹气流动与噪声控制数值研究[J]. 民用飞机设计与研究, 2012(2): 6–12. doi: 10.19416/j.cnki.1674-9804.2012.02.003

    LIU P Q, CUI Y X, QU Q L, et al. Computational investigation of the slat blowing and noise control for high-lift airfoil[J]. Civil Aircraft Design & Research, 2012(2): 6–12. doi: 10.19416/j.cnki.1674-9804.2012.02.003
    [91] 李大伟. 基于自适应结构的飞行器气动和噪声特性研究[D]. 南京: 南京航空航天大学, 2015.

    LI D W. The research of aircraft aerodynamic characte-ristics and noise based on the adaptive constructions[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2015.
    [92] BRIDGES J, BROWN C A. Parametric testing of chevrons on single flow hot jets[C]//Proc of the 10th AIAA/CEAS Aeroacoustics Conference. 2004: 2824. doi: 10.2514/6.2004-2824
    [93] NIELD D A, BEJAN A. Convection in porous media, third edition[M]. New York: Springer-Verlag, 2006. doi: 10.1007/0-387-33431-9
    [94] 刘汉儒, 陈南树, 刘宇, 等. 多孔介质流动控制及气动降噪研究进展[J]. 航空学报, 2023, 44: 027923. doi: 10.7527/S1000-6893.2022.27923

    LIU H R, CHEN N S, LIU Y, et al. Review of Porous Media Using in Flow Control and Aerodynamic Noise Reduction[J]. Acta Aeronautica et Astronautica Sinica, 2023, 44: 027923. doi: 10.7527/S1000-6893.2022.27923
    [95] POTT-POLLENSKE M, WILD J, BERTSCH L. Aero-dynamic and acoustic design of silent leading edge device[C]//Proc of the 20th AIAA/CEAS Aeroacoustics Conference. 2014: 2076. doi: 10.2514/6.2014-2076
    [96] 陆维爽, 郭昊, 胡天翔, 等. 前缘缝翼变迎角气动噪声实验研究[C]// 2018年全国工业流体力学会议论文集. 2018: 10.
    [97] 刘志仁. 二维多段翼型缝翼缝道参数对远场噪声的影响分析[D]. 上海: 上海交通大学, 2011.

    LIU Z R. Far-field aeroacoustic analysis for slat setting of a two-dimensional high-lift configuration[D]. Shanghai: Shanghai Jiao Tong University, 2011.
    [98] 王红建, 罗望, 张锐. 基于缝翼位置参数的多段翼型噪声性能分析[J]. 航空工程进展, 2018, 9(1): 53–61. doi: 10.16615/j.cnki.1674-8190.2018.01.007

    WANG H J, LUO W, ZHANG R. The analysis of noise features for multi-element airfoil based on slat configu-ration parameters[J]. Advances in Aeronautical Science and Engineering, 2018, 9(1): 53–61. doi: 10.16615/j.cnki.1674-8190.2018.01.007
    [99] 王红建, 田峻源, 罗望. 缝翼结构参数对缝翼噪声影响的三维仿真分析[J]. 西北工业大学学报, 2019, 37(6): 1129–1137. doi: 10.3969/j.issn.1000-2758.2019.06.006

    WANG H J, TIAN J Y, LUO W. Three-dimensional simulation analysis of the influence of slat structural parameters on slat aerodynamic noise[J]. Journal of Northwestern Polytechnical University, 2019, 37(6): 1129–1137. doi: 10.3969/j.issn.1000-2758.2019.06.006
    [100] 王红建, 罗望, 张锐. 缝翼结构参数对翼型流场和气动噪声的影响[J]. 航空工程进展, 2019, 10(3): 330–339. doi: 10.16615/j.cnki.1674-8190.2019.03.005

    WANG H J, LUO W, ZHANG R. Effects of slat parameters on features of flow and noise for an airfoil[J]. Advances in Aeronautical Science and Engineering, 2019, 10(3): 330–339. doi: 10.16615/j.cnki.1674-8190.2019.03.005
    [101] 王蕴泽. 基于偏转翼的翼型分离流控制研究[D]. 南京: 南京航空航天大学, 2019.

    WANG Y Z. The flow control of airfoil separation based on deflection wing[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
    [102] WILD J, POTT-POLLENSKE M, NAGEL B. An integrated design approach for low noise exposing high-lift devices[C]//Proc of the 3rd AIAA Flow Control Conference. 2006: 2843. doi: 10.2514/6.2006-2843
    [103] HERR M, POTT-POLLENSKE M, EWERT R, et al. Large-scale studies on slat noise reduction[C]//Proc of the 21st AIAA/CEAS Aeroacoustics Conference. 2015: 3140. doi: 10.2514/6.2015-3140
    [104] LIU Y, LIU P Q, GUO H, et al. Effect of a variable-bend slat on tones due to the cove’s self-excited oscillation[J]. Journal of Aerospace Engineering, 2021, 34(6): 04021077. doi: 10.1061/(asce)as.1943-5525.0001310
    [105] 陆维爽, 刘沛清, 郭昊. 前缘下垂远场低频宽频噪声特性[J]. 航空学报, 2019, 40(10): 121–130. doi: 10.7527/S1000-6893.2019.23152

    LU W S, LIU P Q, GUO H. Characteristics of low frequency broadband noise for leading-edge droop nose measured in a far-field[J]. Acta Aeronautica et Astronautica Sinica, 2019, 40(10): 121–130. doi: 10.7527/S1000-6893.2019.23152
    [106] 杨小权, 孙一峰, 杨士普, 等. 前缘下垂增升装置气动特性和噪声特性研究[C]//第九届全国流体力学学术会议论文摘要集. 2016: 400-401.
    [107] MONNER H P, KINTSCHER M, LORKOWSKI T, et al. Design of a smart droop nose as leading edge high lift system for transportation aircrafts[C]//Proc of the 50th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. 2009: 2128. doi: 10.2514/6.2009-2128
    [108] KINTSCHER M, WIEDEMANN M, MONNER H P, et al. Design of a smart leading edge device for low speed wind tunnel tests in the European Project SADE[J]. International Journal of Structural Integrity, 2011, 2(4): 383–405. doi: 10.1108/17579861111183911
    [109] SMITH M G, CHOW L C, MOLIN N. Attenuation of slat trailing edge noise using slat gap acoustic liners[C]//Proc of the 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference). 2006: 2666. doi: 10.2514/6.2006-2666
    [110] MA Z K, ZHANG X. Numerical investigation of broadband slat noise attenuation with acoustic liner treatment[J]. AIAA Journal, 2009, 47(12): 2812–2820. doi: 10.2514/1.39883
    [111] LU W S, LIU P Q, GUO H. Experimental study on aerodynamic noise characteristics of high-lift configuration with variable gap leading-edge slat[J]. The Journal of the Acoustical Society of America, 2018, 144(3): 1708. doi: 10.1121/1.5067585
    [112] 陈迎春, 李亚林, 李奇, 等. 二维多段翼型声学优化设计研究[C]//中国声学学会第九届青年学术会议论文集. 2011: 2.
  • 加载中
图(27)
计量
  • 文章访问数:  299
  • HTML全文浏览量:  93
  • PDF下载量:  37
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-24
  • 修回日期:  2023-04-09
  • 录用日期:  2023-05-22
  • 网络出版日期:  2023-06-21

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日