留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于MRV的多流程通道全场三维流动特性研究

段敬添 王子瑞 张科 雷蒋 武俊梅

段敬添, 王子瑞, 张科, 等. 基于MRV的多流程通道全场三维流动特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20230015
引用本文: 段敬添, 王子瑞, 张科, 等. 基于MRV的多流程通道全场三维流动特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20230015
DUAN J T, WANG Z R, ZHANG K, et al. Investigation on full field three-dimensional flow in a multi-pass channel based on Magnetic Resonance Velocimetry (MRV)[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230015
Citation: DUAN J T, WANG Z R, ZHANG K, et al. Investigation on full field three-dimensional flow in a multi-pass channel based on Magnetic Resonance Velocimetry (MRV)[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20230015

基于MRV的多流程通道全场三维流动特性研究

doi: 10.11729/syltlx20230015
基金项目: 国家科技重大专项(2017-III-0003-0027);中核集团领创科研项目(J202210014-09)
详细信息
    作者简介:

    段敬添:(1996—),男,河南洛阳人,博士研究生。研究方向:先进冷却技术,实验流体力学。通信地址:陕西省西安市碑林区咸宁西路28 号西安交通大学兴庆校区(710049)。E-mail:djt122196@stu.xjtu.edu.cn

    通讯作者:

    E-mail:wjmxjtu@mail.xjtu.edu.cn

  • 中图分类号: V231.1

Investigation on full field three-dimensional flow in a multi-pass channel based on Magnetic Resonance Velocimetry (MRV)

  • 摘要: 核磁共振成像测速技术(MRV)因其无需复杂的光学系统,能够快速测量复杂结构全场三维三分量速度分布的独特优势,正在成为流场精细化研究的重要手段。在研究MRV关键技术的基础上,成功测得了三流程蛇形通道内的全场三维速度分布。结果表明,MRV能够高分辨率精确解析多流程通道内复杂的三维流动特征及其沿流程演变;从全场三维速度分布可以发现,弯道附近流动具有复杂的三维特征;弯道附近从通道中心向上下端壁及侧壁的二次流明显,直角弯道和U型弯道及其下游都存在清晰的迪恩涡;流体在迪恩涡的驱动下冲击上下端壁,是当地传热强化的主要原因。
  • 图  1  单方向速度编码二维扫描序列

    Figure  1.  Two-dimensional scanning sequence with single-direction velocity encoding

    图  2  流动编码

    Figure  2.  Flow encoding

    图  3  核磁共振成像设备实物图

    Figure  3.  Macrograph of MRI

    图  4  多流程通道流动测量实验系统图

    Figure  4.  Illustration of flow measurement experiment system for multi-pass channel

    图  5  全场三维速度大小分布云图

    Figure  5.  The distribution of full field 3D velocity magnitude

    图  6  不同高度平面二维速度大小分布云图

    Figure  6.  The distribution of 2D velocity magnitude in the planes of different heights

    图  7  进口截面位置说明示意图

    Figure  7.  Location illustration for inlet slices

    图  8  不同截面来流速度分布云图

    Figure  8.  The distribution of incoming flow velocity in different slices

    图  9  z/H = 0平面来流动速度分布曲线

    Figure  9.  Incoming flow velocity distribution curves in z/H = 0 plane

    图  10  y/H = 7平面速度分布

    Figure  10.  Velocity distribution in y/H = 7 plane

    图  11  y/H = 7平面来流动速度分布曲线

    Figure  11.  Incoming flow velocity distribution curves in y/H = 7 plane

    图  12  直角弯道z/H = 0平面局部速度分布

    Figure  12.  Local velocity distribution in z/H = 0 plane near the right-angle bend

    图  13  直角弯道不同截面速度分布云图/直角弯道二次流发展

    Figure  13.  Velocity distribution in different slices near the right-angle bend / Secondary flow development near the right-angle bend

    图  14  直角弯道下游二次流发展

    Figure  14.  Secondary flow development downstream of the right-angle bend

    图  15  直角弯道附近三维流线

    Figure  15.  3D streamlines distribution near the right-angle bend

    图  16  U型弯道z/H = 0平面局部速度分布

    Figure  16.  Local velocity distribution in z/H = 0 plane near the U-shape bend

    图  17  U型弯道不同截面速度分布云图/U型弯道二次流发展

    Figure  17.  Velocity distribution in different slices near the U-shape bend / Secondary flow development near the U-shape bend

    图  18  U型弯道下游二次流发展

    Figure  18.  Secondary flow development downstream of the U-shape bend

    图  19  通道三维流线分布

    Figure  19.  3D streamlines distribution in the channel

    图  20  z/H=-0.4平面z向速度分布云图

    Figure  20.  Z-directional velocity distribution in z/H=-0.4 plane

    图  21  Re=20000,光滑二流程通道端壁Nu/Nu0 分布云图[20]

    Figure  21.  Nu/Nu0 contour of smooth two-pass channel at Re=20000[20]

  • [1] HAN J C. Turbine blade cooling studies at texas A&M university: 1980-2004[J]. Journal of Thermophysics and Heat Transfer, 2006, 20(2): 161–187. doi: 10.2514/1.15403
    [2] NAKAYAMA H, HIROTA M, FUJITA H, et al. Fluid flow and heat transfer in two-pass smooth rectangular channels with different turn clearances[J]. Journal of Turbomachinery, 2006, 128(4): 772–785. doi: 10.1115/1.2101854
    [3] SON S Y, KIHM K D, HAN J C. PIV flow measurements for heat transfer characterization in two-pass square channels with smooth and 90° ribbed walls[J]. International Journal of Heat and Mass Transfer, 2002, 45(24): 4809–4822. doi: 10.1016/S0017-9310(02)00192-8
    [4] 徐俊, 杜彩虹, 王甜, 等. 180°矩形弯管流场的LDV测量[J]. 实验流体力学, 2010, 24(1): 36–41. doi: 10.3969/j.issn.1672-9897.2010.01.007

    XU J, DU C H, WANG T, et al. Experimental measurement of flow field in 180°curved duct with rectangular cross-section by LDV[J]. Journal of Experiments in Fluid Mechanics, 2010, 24(1): 36–41. doi: 10.3969/j.issn.1672-9897.2010.01.007
    [5] WANG P, PU J, YU R B, et al. An experimental investigation on internal flow characteristics in a realistic and entire coolant channel with ribs and film holes[C]//Proceedings of ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition. 2018. doi: 10.1115/GT2018-75715
    [6] MORAN P R. A flow velocity zeugmatographic interlace for NMR imaging in humans[J]. Magnetic Resonance Imaging, 1982, 1(4): 197–203. doi: 10.1016/0730-725X(82)90170-9
    [7] LI Z F, LIANG S C, XU H M, et al. Flow analysis of aortic dissection: comparison of inflow boundary conditions for computational models based on 4D PCMRI and Doppler ultrasound[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2021, 24(11): 1251–1262. doi: 10.1080/10255842.2021.1876036
    [8] TOGGWEILER S, DE B B, KARAKAS O, et al. Turbulent kinetic energy loss and shear stresses before and after transcatheter aortic valve replacement[J]. JACC:Case Reports, 2022, 4(5): 318–320. doi: 10.1016/j.jaccas.2022.01.009
    [9] JALAL S, VAN DE MOORTELE T, AMILI O, et al. Steady and oscillatory flow in the human bronchial tree[J]. Physical Review Fluids, 2020, 5(6): 063101. doi: 10.1103/physrevfluids.5.063101
    [10] XIAO Q W, STEWART N J, WILLMERING M M, et al. Human upper-airway respiratory airflow: in vivo comparison of computational fluid dynamics simulations and hyperpolarized 129Xe phase contrast MRI velocimetry[J]. PLoS One, 2021, 16(8): e0256460. doi: 10.1371/journal.pone.0256460
    [11] CHANG C T P, TED WATSON A. NMR imaging of flow velocity in porous media[J]. AIChE Journal, 1999, 45(3): 437–444. doi: 10.1002/aic.690450302
    [12] KOPTYUG I V, SAGDEEV R Z. Applications of NMR tomography to mass transfer studies[J]. Russian Chemical Reviews, 2002, 71(10): 789–835. doi: 10.1070/rc2002v071n10abeh000743
    [13] ELKINS C J, MARKL M, PELC N, et al. 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows[J]. Experiments in Fluids, 2003, 34(4): 494–503. doi: 10.1007/s00348-003-0587-z
    [14] BRUSCHEWSKI M, JOHN K, WÜSTENHAGEN C, et al. Commissioning of an MRI test facility for CFD-grade flow experiments in replicas of nuclear fuel assemblies and other reactor components[J]. Nuclear Engineering and Design, 2021, 375: 111080. doi: 10.1016/j.nucengdes.2021.111080
    [15] TSURU T, ISHIDA K, FUJITA J, et al. Three-dimensional visualization of flow characteristics using a magnetic resonance imaging in a lattice cooling channel[J]. Journal of Turbomachinery, 2019, 141(6): 061003. doi: 10.1115/1.4041908
    [16] BAEK S, LEE S, HWANG W, et al. Experimental and numerical investigation of the flow in a trailing edge ribbed internal cooling passage[J]. Journal of Turbomachinery, 2019, 141(1): 011012. doi: 10.1115/1.4041868
    [17] 张科, 段敬添, 雷蒋, 等. 基于MRV的菱形肋柱冷却通道三维全流场分析[J/OL]. 航空动力学报.

    ZHANG K, DUAN J T, LEI J, et al. Analysis on the 3D full flow field in a cooling channel with diamond pin-fins based on MRV[J/OL]. Journal of Aerospace Power. doi: 10.13224/j.cnki.jasp.20220051
    [18] 俎栋林, 高家红. 核磁共振成像: 生理参数测量原理和医学应用[M]. 北京: 北京大学出版社, 2014: 190.

    ZU D L, GAO J H. Magnetic resonance imaging: measurement principle and medical application of physiological parameters[M]. Beijing: Peking University Press, 2014: 190.
    [19] COLETTI F, ELKINS C J, EATON J K. Three-dimensional velocity measurements of film cooling flow under favorable pressure gradient[C]//Proceedings of ASME Turbo Expo 2012: Turbine Technical Conference and Exposition. 2013. doi: 10.1115/GT2012-69402
    [20] HE W B, ZHANG K, WU J M, et al. Effects of high buoyancy parameter on flow and heat transfer of two-pass smooth/ribbed channels[J]. Energies, 2021, 15(1): 148. doi: 10.3390/en15010148
  • 加载中
图(22)
计量
  • 文章访问数:  151
  • HTML全文浏览量:  124
  • PDF下载量:  11
  • 被引次数: 0
出版历程
  • 收稿日期:  2023-02-21
  • 修回日期:  2023-04-10
  • 录用日期:  2023-05-05
  • 网络出版日期:  2023-06-05

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日