Application of typical magnetic suspension system in maglev flight wind tunnel
-
摘要: 磁浮飞行风洞的运行原理是利用磁悬浮、牵引和导向技术,驱动搭载模型的磁浮平台在封闭直线管道内作高速运动。磁悬浮系统对于精确控制模型加速/匀速/减速运动、达到试验所需运动状态尤其重要。本文结合磁浮飞行风洞总体技术指标及对磁悬浮系统的要求,从运行稳定性、系统安全性、试验功能性、环境适应性、技术成熟度等方面,对比分析常导电磁悬浮、永磁电动悬浮、高温/低温超导电动悬浮和高温超导钉扎悬浮系统。常导电磁悬浮系统难以达到最高运行速度(马赫数1.0)的技术指标,暂不作为磁浮飞行风洞备选磁悬浮方案。针对磁浮飞行风洞应用场景,基于层次分析法和灰色关联度分析法建立磁悬浮系统综合决策模型。结果表明,高温超导电动悬浮系统和高温超导钉扎悬浮系统具有较好的应用潜力。Abstract: The operation principle of the maglev flight wind tunnel is to drive the model to move at high speed in a closed straight pipe through magnetic suspension. The maglev system is particularly important for accurate control of the acceleration/uniform/deceleration process of the model. This study made a comprehensive analysis of the four maglev systems, including normal conductive electromagnetic suspension (EMS), permanent magnet electrodynamic suspension (PM–EDS), high/low temperature superconducting electrodynamics suspension (HTS/LTS–EDS), and high temperature superconducting pinning levitation (HTS–PL). These several maglev systems were comprehensively analyzed from five aspects. EMS system could not meet the specification requirement of the maximum operating speed Ma = 1.0, which could not be used as an alternative maglev system for the maglev flight wind tunnel. Based on the analytic hierarchy process (AHP) and grey relational analysis (GRA), a comprehensive decision-making model of the maglev system was established for the application scenario of the maglev flight wind tunnel. Results show that the HTS–EDS and HTS–PL system have better application potential in the maglev flight wind tunnel.
-
Key words:
- flight wind tunnel /
- vacuum pipeline /
- maglev /
- analytic hierarchy process /
- grey relational analysis
-
表 1 判断矩阵标度及含义
Table 1. Scaling and meaning of decision matrix
重要性等级 aij值 说明 ei比ej极端重要 9 2个指标的判断差异达到可能范围内最大 ei比ej强烈重要 7 2个指标的判断差异强烈 ei比ej明显重要 5 2个指标的判断差异明显 ei比ej稍重要 3 2个指标的判断差异轻微 ei和ej同等重要 1 2个指标无判断差异 ei比ej稍不重要 1/3 2个指标的判断差异轻微 ei比ej明显不重要 1/5 2个指标的判断差异明显 ei比ej强烈不重要 1/7 2个指标的判断差异强烈 ei比ej极端不重要 1/9 2个指标的判断差异达到可能范围内最大 注:若ei和ej的差异程度介于上述2个相邻等级之间,则aij值相应取为8、6、4、2、1/2、1/4、1/6、1/8。 表 2 指标评价结果
Table 2. Indicator quantification value of centesimal system
指标层 永磁
电动悬浮低温超导
电动悬浮高温超导
电动悬浮高温超导
钉扎悬浮垂向运行稳定性 C B B C 侧向运行稳定性 C B B C 纵向运行稳定性 C B B B 悬浮控制系统 B D C C 抗气动力激扰 C B B C 环境与健康影响 D D A B 最高运行马赫数 A A A A 最低试验马赫数 A A A A 平台牵引性能 D C C B 环境温度适应性 A A A A 轨道平顺适应性 C A A B 真空环境热效应 B B B B 核心技术储备 B D B A 技术理论成熟度 B B B B 工程应用进展 C B C C -
[1] 倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206 [2] MNICH P. 德国和日本磁悬浮高速铁路系统的现状和比较[J]. 王渤洪, 译. 变流技术与电力牵引, 2001(6): 1–8. doi: 10.13889/j.issn.2095-3631.2001.06.001 [3] 舒光伟, Reinhold Meisinger. 德国电磁型磁浮列车40年回顾[J]. 上海应用技术学院学报(自然科学版), 2012, 12(4): 305–309.SHU G W, MEISINGER R. Review of German EMS maglev vehicles in the past 40 years[J]. Journal of Shanghai Institute of Technology (Natural Science), 2012, 12(4): 305–309. [4] 大槻久夫. 日本超导磁悬浮铁路开发的现状[J]. 易厚梅, 译. 变流技术与电力牵引, 2002(3): 5–7. doi: 10.13889/j.issn.2095-3631.2002.03.002 [5] 蓝建中. 日本超导磁浮列车时速创纪录[J]. 城市轨道交通研究, 2015, 18(5): 134. [6] 张瑞华, 刘育红, 徐善纲. 美国Magplane磁悬浮列车方案介绍[J]. 变流技术与电力牵引, 2005(5): 40–43. doi: 10.13889/j.issn.2095-3631.2005.05.009 [7] POST R F. Toward more efficient transport: the inductrack maglev system[EB/OL]. [2021-11-25]. https://gcep.stanford.edu/pdfs/ChEHeXOTnf3dHH5qjYRXMA/09_Post_10_11_trans.pdf. [8] 张旭东. 我国将在2020年研制出时速600公里高速磁浮样车[J]. 广东交通, 2018(1): 46. [9] 邓自刚, 刘宗鑫, 李海涛, 等. 磁悬浮列车发展现状与展望[J]. 西南交通大学学报, 2022, 57(3): 455–474, 530. doi: 10.3969/j.issn.0258-2724.20220001DENG Z G, LIU Z X, LI H T, et al. Development status and prospect of maglev train[J]. Journal of Southwest Jiaotong University, 2022, 57(3): 455–474, 530. doi: 10.3969/j.issn.0258-2724.20220001 [10] GOU J S. Development status and global competition trends analysis of maglev transportation technology based on patent data[J]. Urban Rail Transit, 2018, 4(3): 117–129. doi: 10.1007/s40864-018-0087-3 [11] JACOBS W A. Magnetic launch assist-NASA’s vision for the future[J]. IEEE Transactions on Magnetics, 2001, 37(1): 55–57. doi: 10.1109/20.911790 [12] POWELL J, MAISE G, RATHER J. Maglev launch: ultra-low cost, ultra-high volume access to space for cargo and humans[J]. American Institute of Physics Conference Proceedings, 2010, 1208(1): 121–136. doi: 10.1063/1.3326240 [13] POWELL J, MAISE G, PANIAGUA J, et al. Maglev launch and the next race to space[C]//Proc of the 2008 IEEE Aerospace Conference. 2008: 1-20. doi: 10.1109/AERO.2008.4526501 [14] RANDAHL J J. 633 mph-nothing to mach [EB/OL]. [2016-04-20]. https://www.aerotechnews.com/blog/2016/04/20/ 633-mph-nothing-to-mach/. [15] 马伟明, 鲁军勇. 电磁发射技术[J]. 国防科技大学学报, 2016, 38(6): 1–5. doi: 10.11887/j.cn.201606001MA W M, LU J Y. Electromagnetic launch technology[J]. Journal of National University of Defense Technology, 2016, 38(6): 1–5. doi: 10.11887/j.cn.201606001 [16] 王延斌. 世界首个电磁橇设施运行, 磁悬浮速度突破1000公里/小时[EB/OL]. [2022-10-21]. https://m.gmw.cn/baijia/2022-10/21/1303175289.html. [17] 战培国, 杨炯. 国外风洞试验的新机制、新概念、新技术[J]. 流体力学实验与测量, 2004, 18(4): 1–6. doi: 10.3969/j.issn.1672-9897.2004.04.001ZHAN P G, YANG J. New systems, concepts and techni-ques in the area of foreign wind tunnel test[J]. Experiments and Measurements in Fluid Mechanics, 2004, 18(4): 1–6. doi: 10.3969/j.issn.1672-9897.2004.04.001 [18] LOFFTUS D, LUND T, ROTE D. High-lift flight tunnel[R]. NASA/CR-2000-210653, 2000. [19] 张昆仑. 高速磁浮铁路技术[M]. 北京: 中国铁道出版社, 2021. [20] RACHMAN N F, WIRAWAN W A, PRADIPTA A, et al. Design and levitation performance above A permanent magnet in maglev train prototype[J]. IOP Conference Series: Earth and Environmental Science, 2022, 1000(1): 012002. doi: 10.1088/1755-1315/1000/1/012002 [21] 苏宇锋, 叶志通, 段智勇, 等. 微型抗磁悬浮振动能量采集器结构分析与实验[J]. 机械设计与制造, 2017(10): 19–23. doi: 10.19356/j.cnki.1001-3997.2017.10.006SU Y F, YE Z T, DUAN Z Y, et al. Analysis and experiment of structure design for the micro-vibration energy harvester based on diamagnetic levitation[J]. Machinery Design & Manufacture, 2017(10): 19–23. doi: 10.19356/j.cnki.1001-3997.2017.10.006 [22] EARNSHAW S R. On the nature of the molecular forces which regulate the constitution of the luminiferous ether[J]. Cambridge Philosophical Society, 1848, 18(7): 97–112. [23] 高涛. 永磁磁浮轨道交通系统的悬浮系统研究与设计[D]. 赣州: 江西理工大学, 2019.GAO T. Research and design of suspension system for permanent magnetic maglev rail transit system[D]. Ganzhou: Jiangxi University of Science and Technology, 2019. [24] MORISHITA M, AKASHI M. Guide-effective levitation control for electromagnetic suspension systems[J]. IEEJ Transactions on Industry Applications, 1999, 119(10): 1259–1268. doi: 10.1541/ieejias.119.1259 [25] 赵春发, 翟婉明. 常导电磁悬浮动态特性研究[J]. 西南交通大学学报, 2004, 39(4): 464–468.ZHAO C F, ZHAI W M. Dynamic characteristics of electromagnetic levitation systems[J]. Journal of Southwest Jiaotong University, 2004, 39(4): 464–468. [26] 陈殷. 低速永磁电动悬浮电磁力特性研究[D]. 成都: 西南交通大学, 2015.CHEN Y. Characteristic analysis of electromagnetic forces created by low-speed PM electrodynamic suspension[D]. Chengdu: Southwest Jiaotong University, 2015. [27] GUTFLEISCH O, WILLARD M A, BRÜCK E, et al. Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient[J]. Advanced Materials, 2011, 23(7): 821–842. doi: 10.1002/adma.201002180 [28] 刘文旭, 李文龙, 方进. 高温超导磁悬浮技术研究论述[J]. 低温与超导, 2020, 48(2): 44–49. doi: 10.16711/j.1001-7100.2020.02.009LIU W X, LI W L, FANG J. Review of research on high temperature maglev[J]. Superconductivity, 2020, 48(2): 44–49. doi: 10.16711/j.1001-7100.2020.02.009 [29] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008 [30] 邓自刚, 李海涛. 高温超导磁悬浮车研究进展[J]. 中国材料进展, 2017, 36(5): 329–334, 351. doi: 10.7502/j.issn.1674-3962.2017.05.02DENG Z G, LI H T. Recent development of high-temperature superconducting maglev[J]. Materials China, 2017, 36(5): 329–334, 351. doi: 10.7502/j.issn.1674-3962.2017.05.02 [31] 王宇飞. 高速磁悬浮系统的电磁发射特性研究[D]. 北京: 北京交通大学, 2020.WANG Y F. Research on the electromagnetic emission characteristics of high-speed maglev system[D]. Beijing: Beijing Jiaotong University, 2020. doi: 10.26944/d.cnki.gbfju.2020.001405 [32] 徐飞, 罗世辉, 邓自刚. 磁悬浮轨道交通关键技术及全速度域应用研究[J]. 铁道学报, 2019, 41(3): 40–49. doi: 10.3969/j.issn.1001-8360.2019.03.006XU F, LUO S H, DENG Z G. Study on key technologies and whole speed range application of maglev rail transport[J]. Journal of the China Railway Society, 2019, 41(3): 40–49. doi: 10.3969/j.issn.1001-8360.2019.03.006 [33] WANG H D, DENG Z G, MA S S, et al. Dynamic simulation of the HTS maglev vehicle-bridge coupled system based on levitation force experiment[J]. IEEE Transactions on Applied Superconductivity, 2019, 29(5): 3601606. doi: 10.1109/TASC.2019.2895503 [34] ZHANG J K, DENG Z G, WANG W, et al. Vibration characteristics of the new high-temperature superconducting maglev vehicle based on operation test[J]. IEEE Transac-tions on Applied Superconductivity, 2021, 31(8): 3602904. doi: 10.1109/TASC.2021.3091087 [35] 吴祥明. 高速磁浮上海示范线的建设[J]. 同济大学学报(自然科学版), 2002, 30(7): 814–818. doi: 10.3321/j.issn:0253-374X.2002.07.008WU X M. Construction of Shanghai maglev demonstration line[J]. Journal of Tongji University (Natural Science), 2002, 30(7): 814–818. doi: 10.3321/j.issn:0253-374X.2002.07.008 [36] 李琦. 我国时速600公里高速磁浮试验样车下线[J]. 今日科苑, 2019(6): 1. [37] MONTGOMERY D B. Overview of the 2004 Magplane design[C]// Maglev 2004 Proceedings. 2004: 106-113. [38] GUROL S, BALDI B, POST R. General atomics urban maglev program status[C]//Proc of the 19th International Conference on Magnetically Levitated Systems and Linear Drives. 2006: 1-4. [39] ABDELRAHMAN A S, SAYEED J, YOUSSEF M Z. Hyperloop transportation system: analysis, design, control, and implementation[J]. IEEE Transactions on Industrial Electronics, 2018, 65(9): 7427–7436. doi: 10.1109/TIE.2017.2777412 [40] 许莹. 中低运量城市轨道交通系统制式选择研究[D]. 北京: 北京交通大学, 2014.XU Y. Research on system mode selection of medium or small carrying-capacity urban rail transit[D]. Beijing: Beijing Jiaotong University, 2014. [41] 王兴仁, 邓友生, 李红敏, 等. 都市区城市轨道交通制式综合决策模型[J]. 西安科技大学学报, 2022, 42(5): 968–974.WANG X R, DENG Y S, LI H M, et al. Comprehensive decision-making model of urban rail transit systems in metropolitan area[J]. Journal of Xi’an University of Science and Technology, 2022, 42(5): 968–974. [42] 蒋诗泉. 基于一般灰数的灰色关联决策模型及其应用研究[D]. 南京: 南京航空航天大学, 2018.JIANG S Q. Research on model and application of grey incidence decision making based on general grey number[D]. Nanjing: Nanjing University of Aeronautics and Astro-nautics, 2018. doi: 10.27239/d.cnki.gnhhu.2018.000135 -