基于在线质谱技术的复杂燃烧场诊断研究进展

李静, 杨栋, 厉梅, 侯可勇

李静, 杨栋, 厉梅, 等. 基于在线质谱技术的复杂燃烧场诊断研究进展[J]. 实验流体力学, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145
引用本文: 李静, 杨栋, 厉梅, 等. 基于在线质谱技术的复杂燃烧场诊断研究进展[J]. 实验流体力学, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145
LI J, YANG D, LI M, et al. Progress in complex combustion field diagnostics based on on-line mass spectrometry technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145
Citation: LI J, YANG D, LI M, et al. Progress in complex combustion field diagnostics based on on-line mass spectrometry technology[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(5): 18-33. DOI: 10.11729/syltlx20220145

基于在线质谱技术的复杂燃烧场诊断研究进展

详细信息
    作者简介:

    李静: (1999—),男,山东聊城人,博士研究生。研究方向:在线质谱燃烧诊断技术。通信地址:山东省青岛市即墨区鳌山卫街道滨海公园72号山东大学青岛校区环境研究院环境安全在线质谱技术与装备实验室(266237)。E-mail:202133018@mail.sdu.edu.cn

    通讯作者:

    侯可勇: E-mail:houky@sdu.edu.cn

  • 中图分类号: TK31

Progress in complex combustion field diagnostics based on on-line mass spectrometry technology

  • 摘要: 燃烧场通常是气−固−液三相耦合的复杂体系,其燃烧诊断结果可支撑提高燃烧效率和降低污染物排放的研究。为了使燃烧诊断结果更加精确,先进的检测方法和检测系统必不可少。在线质谱仪具有灵敏度高、分析速度快、检测范围广等优点,可用于高温、高压等严苛条件下的燃烧场诊断,能够获得更全面的诊断信息。本文对近年来在线质谱仪质量分析器、电离源和取样系统等关键技术的发展概况进行了总结,列举了在线质谱技术在燃烧场火焰产物组分浓度和火焰温度测量中的应用,对在线质谱技术在复杂燃烧场诊断方面面临的挑战和发展前景进行了分析。
    Abstract: The combustion field is usually a complex system of gas-solid-liquid triphase coupling, and the results obtained from combustion diagnostic can support the researches to improve combustion efficiency and reduce pollutant emissions. In order to make the measurement results more accurate, it is urgent to develop advanced detection methods and detection systems. After several years of development, on-line mass spectrometry has the advantages of high sensitivity, fast analysis speed and wide detection range. It can be used for combustion flow field diagnostics under severe conditions such as high temperature and pressure, and can obtain more comprehensive and sensitive diagnostic information. Firstly, this paper summarized the development of key technologies, e.g., analyzer, ionization source, and sampling systems for on-line mass spectrometry in recent years. Secondly, the applications of on-line mass spectrometry on the measurement of flame component concentration and flame temperature in combustion field were enumerated. On this basis, the challenges and development prospects of the on-line mass spectrometry in complex combustion field diagnostics were summarized, which could provide reference for the relevant researchers.
  • 超临界流体(Supercritical Fluid, SCF)是处于临界温度(critical temperature, Tc)和临界压力(cri-tical pressure, pc)以上的特殊物质相态(CO2Tc为31.1 ℃,pc为7.38 MPa)。超临界现象是Andrew于1869年首次发现的。在后来的100多年时间里,经过人们的深入研究,发现其具有液体和气体的双重特性,既有与液体接近的密度,又有与气体接近的黏度及高扩散系数,因此具有很强的溶解能力和良好的流动、传递性能,被广泛用于能源、化学化工、环保、食品、生物技术等诸多领域[1-2]。在超临界压力下,有一个重要的参数叫拟临界温度(指在某一给定压力下,流体比热容峰值所对应的温度)。在拟临界温度附近,超临界流体的物性变化非常剧烈[3]

    流体由气液共存状态转变为超临界状态时,经过拟临界温度时物性会发生剧烈变化[4-6]。比如在压力为7.6 MPa时,CO2对应的拟临界温度为32.3 ℃。在此压力下,随着温度的升高:密度和黏度会出现骤降,在临界温度附近5 ℃内,密度降低约400 kg/m3,黏度降低约3 × 105 Pa·s;导热系数整体呈降低趋势,但在拟临界温度之前会出现窄范围的骤增现象,并在拟临界温度点处达到峰值。

    由于这种独特的畸变特性,超临界二氧化碳(SCO2)布雷顿循环中通常通过改变温度、压力使其处于拟临界温度附近,以提高系统效率。邢凯翔[7]发现压缩机入口温度34 ℃、压力7.5 MPa时,再压缩循环效率比简单布雷顿循环高5%,一次再热能提高1.8%的效率。在能源领域,超临界流体的换热特性一直是研究的重点之一[8]。热流密度、质量流速、压力、进口温度、流道形状等因素对流动换热特性都会产生一定的影响。王鹏飞等[9]发现SCO2自然循环的稳态质量流量随加热功率的增大先快速增大后缓慢降低,并通过理论模型分析验证了实验的正确性。杨凤叶等[10]对竖直管内SCO2局部对流换热进行了模拟研究,发现:二氧化碳进口压力对热流体温度的影响较小,但对换热系数影响较大,在换热前段处换热系数会随压力的增大而增大,且会更早到达峰值,换热后段换热系数较小;雷诺数Re的大小对换热系数的影响较为明显,热流体进口的Re越大,局部换热系数峰值越高。淮秀兰等[11]对1.31 mm微管内SCO2的局部和平均传热与压降特性进行了实验研究,研究发现:质量流速越大,压降越大,传热系数越高;随系统压力的升高,最大传热系数降低。

    Rayleigh–Bénard(RB)系统是从众多自然现象中抽象出来的用来研究热对流现象的经典模型[12],很多学者基于RB系统对流体进行了关于湍流热对流的研究。郗恒东等[13]通过流动示标和PIV(Par-ticle Image Velocimetry)测量揭示了对流系统的三维立体结构,证明了在湍流热对流系统中不同的流动模式可以得到不同的传热效率。周全等[14]介绍了湍流热对流中的几个经典问题,从湍流传热、相干结构、大尺度环流和湍流中脉动量的小尺度统计这4个方面对前人的成果进行了总结。郗恒东和夏克青[15]于2008年首次在圆柱形RB系统中发现了第一类多湍流现象,即在相同的控制参数下,系统的大尺度流动存在不同的、可以自发切换的湍流状态(结构)。另一类多湍流现象则是由于流动初始时刻给定了不同的初始条件进而演化为不同的稳定流动状态。陈鑫等[16]对2类多湍流现象进行了深入讨论,并倾向于认为第二类多湍流现象与各态遍历假设是相符的。Accary等[17]使用有限体积方法对瑞利数Ra为106~108的流体进行三维RB对流数值模拟,并对对流状态和向湍流过渡的阶段进行了时空描述。Valori等[18]对超临界流体的热对流实验进行了PIV处理,可观测流场的速度,并利用流体密度变化引起的光学畸变,探究了PIV技术处理超临界流体速度的可靠性,实验结果表明PIV技术在约 75% 的测量域中是可靠的(即可靠度较高)。

    目前对RB流动的研究主要考虑常规流体的浮力流动,关于超临界流体在超临界点附近的对流与相变耦合过程的研究鲜有报道。当下对超临界流体湍流传热的研究主要存在以下几个问题:1)研究大多采用数值模拟方法,结果的准确性还需要实验验证;2)恒温容器内温度对CO2相变影响的研究较多,温差对流动状态影响的研究较少;3)更关注超临界流体的直接应用和工艺,对SCO2复杂物性变化导致的非常规流动机理不清楚。

    本文观测了RB系统的二氧化碳在跨临界条件下的相态变化和流动状态,在前人研究超临界流体的观测基础上,增加了温差实验条件,并对流场进行了PIV速度处理,研究超临界热对流、跨临界“雾化”、冷凝和流动分层等物理现象,分析了超临界、跨临界等条件下的流态与速度分布。由于流态对温度极为敏感,通过微小温度变化可使流动经历复杂变化,最终实现气液分离。本文可为超临界流体传热、材料制备和物性测量等研究和应用奠定基础。

    二氧化碳容器由不锈钢压力容器和光学级人造蓝宝石窗口组成。二氧化碳容器内部的实验模型为尺寸20 mm(长,L) × 20 mm (宽,W)× 20 mm(高,H)的二氧化碳方腔(图1)。方腔顶部安装制冷片,底部粘贴电热膜,以保证腔内二氧化碳流体的上下温度差。方腔底部和顶部分别安装铂电阻,用来实时测量底部温度Td与顶部温度Tu

    图  1  超临界二氧化碳方腔模型及实物图
    Fig.  1  Supercritical CO2 container model and physical diagram

    图2所示,实验系统供气系统、实验段、温控系统和图像采集系统4部分组成。

    图  2  实验系统图
    Fig.  2  Experimental system diagram

    供气系统由二氧化碳气瓶、阀组和管路组成,本实验初始为方腔加注50%的液态二氧化碳。

    实验段内方腔模型尺寸相对较小,内部流体密度不同所引起的光学畸变微小,对向量修正后的速度测量造成的影响可以忽略。

    实验温度由PID(Proportional Integral Deriva-tive)方法进行反馈控制,通过上下壁的Pt100铂电阻测温,反馈给欧陆表,控制直流电源输出功率实现控温,通过欧陆表自身的PID参数自整定功能获得更高的控温精度和更快的响应时间。欧陆表的控温精度为:下底板0.1 ℃,上底板0.01 ℃。设置目标温度后,温控系统开始升温,当达到预定温差ΔT 0 (ΔT 0 = $T^0_{\rm{d}}-T^0_{\rm{u}} $)后,进行线性降温。在30 min内,热端由31.2 ℃降到28.2 ℃,冷端由31.00 ℃降到28.00 ℃,降温期间上下底板平均温差基本保持为0.2 ℃。实验选取某个时刻的温度和图像来记录CO2在超临界条件下的流动状态演变。

    图像采集系统由高速相机和PIV软件组成,用于记录二氧化碳的流动状态,观测演变过程,完成雾滴等的速度测量。实验图像采样帧率为80 帧/s,可以完成对气液流态的实时捕捉。立方体系统进行PIV计算时,理论上采用片光更合适,能更准确地计算出同一平面上的速度值,但由于实验系统侧壁材料不透光,在侧面打入片光非常困难,因此目前进行的PIV计算是对容器内部流场的平均表征。

    流场图由Flir相机拍摄,为了更清晰地体现流场状态,本文对图片进行了亮度、对比度等调节。速度矢量图是通过对流场图进行互相关计算、对个别误差较大向量进行修正获得向量文件,然后将向量文件导入Tecplot软件进行处理得到。判读区大小为32 像素 × 32 像素,步长为16 像素 × 16 像素,图像放大率为0.043 mm/像素,

    实验计算瑞利数Ra、普朗特数Pr所需的物性参数来源于REFPROP软件中的NIST数据库,并由MATLAB软件编制程序索引。

    随着温度的降低,SCO2会发生一系列的相变,根据流体的宏观物理特征,整个相变流动过程可划分为超临界流动、跨临界流动、气液两相流动3个阶段。当气液态二氧化碳分界线逐渐模糊直到消失,这就说明二氧化碳进入了超临界流动阶段;温度逐渐降低,越过了二氧化碳临界温度时,宏观上会出现乳化现象,这一阶段为跨临界流动阶段;温度继续降低,容器内出现流体分层现象及明显的气液界面时,就进入了气液两相流动阶段。

    在实验中降温过程出现的这3个阶段,每个阶段每层流体的密度有较大不同,这为示踪粒子的选择增加了难度。在临界点附近,二氧化碳分子扩散系数急剧减小,聚集程度急剧升高,宏观上出现了充满雾滴的雾化现象。当灯光通过雾滴时,会出现黑白灰颜色(即为米氏散射)。雾滴直径与灯光入射波波长(437.2~616.2 nm)相当,且有良好的跟随性,符合作为示踪粒子的要求。

    在方腔内,保持上下底板温差恒定(ΔT = 0.4 ℃)并进行线性升温,直至方腔内的二氧化碳进入超临界状态,如图3所示,其中xy分别为沿方腔的长度和高度方向,坐标原点位于方腔的中心。方腔底部温度较高,SCO2密度较小;顶部温度较低,SCO2密度较大。由于受到浮力的作用,较热的低密度流体上升,较冷的高密度流体下沉,腔体内的流体形成对流。在对流中存在明显的羽流现象,冷羽流生成于上温度边界层,热羽流生成于下温度边界层,无数小羽流在腔内混合区内相互汇合聚集,最终形成簇状大股羽流做上下往复运动。壁面附近羽流速度要大于方腔中心,且最大速度出现在下壁面附近。

    图  3  SCO2在方腔内的流动(Td = 31.6 ℃, Tu = 31.20 ℃)
    Fig.  3  Flow of SCO2 in the square cavity (Td = 31.6 ℃, Tu = 31.20 ℃)

    图4展示了SCO2在不同壁面温度和不同温差下的流动状态。横向对比可以看出,在上表面温度不变的情况下,随着温差ΔT增大,腔内对流更加剧烈。当ΔT = 0.2 ℃时,羽流只出现在上、下壁面附近,并没有形成整个容器内的环状对流(图4(a))。ΔT进一步增大,羽流的数量也进一步增多,并开始沿壁面附近不断运动,腔内的对流更加强烈,运动状态更加趋近于无规则。当ΔT = 0.6 ℃时,方腔内可以看到明显的环状对流,羽流已经存在于整个方腔,但是方腔中央的羽流较稀疏(图4(b))。当ΔT = 1.0 ℃时,羽流充满整个方腔,对流的速度加快,且腔内呈现出复杂的无规则运动模式(图4(c))。纵向对比可以看出,在ΔT相同的情况下,增大上(下)底板的温度,流体中的羽流数量、大小和流动状态并不会发生较大变化。由此可以看出,方腔内SCO2的流动状态对温差敏感度较高,而对相同温差下的温度高低敏感度较低。

    图  4  不同壁面温度和不同温差下方腔内的SCO2流动
    Fig.  4  SCO2 flow in the square cavity under different wall temperatures and temperature differences

    值得注意的是,在实验过程中方腔两侧会有流体喷涌而出,并随着时间的演化沉积到底部。这是由于方腔两侧开有二氧化碳的进气管道和压力测量的管道,且管道存在不可忽略的体积,会存留部分SCO2,而且管道中的SCO2不易受到上下加热底板的作用,导致管内流体与腔内流体存在一定的温差,管内温度较低、流体密度较大,因浮力不断喷涌下沉至方腔底部,腔内温度较高、流体密度较小,因浮力不断爬升至管内,不断循环。

    当温度跨过临界点时,流体的热物性会发生剧烈的变化,这就是超临界流体的物性畸变特性。SCO2在跨过临界点时,跨临界相变过程与热对流过程耦合,会产生一些特殊的流动现象。

    以恒定的上下底板温差ΔT对SCO2进行线性降温,当流体的平均温度降低至临界点附近时,会出现“雾化”现象。首先,当温度为Td = 30.2 ℃、Tu = 29.81 ℃时,压力约为7.21 MPa,Pr ≈ 16.22,Ra ≈ 1.40 × 1010。如图5(a)所示,此时下底板附近开始出现雾状流体,其形状与Rayleigh–Bénard对流中的“蘑菇状”羽流结构类似,并顺着对流方向沿壁面不断铺展开来;同时,上底板开始冷凝出体积很小的液滴,由于质量较小,且对流会产生水平方向的力,所以液滴下落时也会沿壁面下落至下底板。起初2种不同形式的相变过程分别占据了方腔的左下和右上两部分,在液滴域,受重力影响,液滴的下落速度会加快,且液滴的下落速度大于雾滴运动速度。随后,当温度到达Td = 30.0 ℃、Tu = 29.72 ℃时,压力约为7.20 MPa,Pr ≈ 14.89,Ra ≈ 1.12 × 1010,上下底板和壁面不断产生雾状流体,腔内雾状流体不断增多,并有规则地沿壁面流动形成环流。由于方腔中部雾滴较少,可以清楚地看到液滴下落,所以在速度矢量图中呈现出越靠近中部速度越快的趋势,如图5(b)所示。最后,当温度到达Td = 29.8 ℃、 Tu = 29.57 ℃时,压力约为7.16 MPa,Pr ≈ 13.04,Ra ≈ 7.95 × 109,如图5(c)所示,雾状流体充斥整个方腔,流动状态也变得无规律,雾滴逐渐沉降到容器底部,速度的趋势和形成原因与上一过程(图5(b))类似。在此过程(图5(c))中,液滴凝结这一现象持续存在,是二氧化碳由超临界态转变为气液两相的过程,该过程跨越了临界点,扩散系数急剧减小,CO2Pr 在13~17之间,Ra在0.80 × 1010~1.40 × 1010之间,二氧化碳的聚集程度急剧升高,宏观上表现为“雾化”现象。

    图  5  跨临界下的方腔内CO2流动过程
    Fig.  5  CO2 flow process in square cavity under transcritical conditions

    在平均温度低于约29.6 ℃之后,方腔内随即出现了二氧化碳气液界面。此过程内CO2Pr在8.07~11.27之间,Ra在3.95 × 109~9.08 × 109之间,由于方腔上、下底板存在温差(即竖直方向存在温度梯度),且此时的内部流体比热急剧下降,流体对温度极为敏感,在极小的温差下就会表现出截然不同的物理现象,所以内部会出现气液分层对流与相变的耦合现象。

    图6所示,温度冷却到临界点Tc以下,当Td = 29.7 ℃,Tu = 29.34 ℃时,压力约为7.14 MPa,Pr ≈ 10.44,Ra ≈ 9.08 × 109,在方腔中部开始产生流动分层现象,可分为絮状羽流域(域1),雾滴聚集域(域2)和液相域(域3)。在絮状羽流域(域1)主要由气相二氧化碳和一层较小密度雾滴组成,该雾状流体在温差作用下,以蘑菇状羽流的形式上下运动,在2个方向羽流交汇处(3/4H),雾滴颗粒的速度达到最大。竖直向上的羽流会带动周围的流体向下运动形成涡流,涡流的存在会使本来竖直向上的运动产生水平位移,所以每个羽流会像水草一样向上或向下摇曳运动。雾滴聚集域(域2)为液相与气相的过渡域,由一层高密度的悬浮微液滴组成,图像呈现深灰色雾状阴影。将雾滴聚集域的局部进行放大,可以清楚地看到内部密集的雾滴,此区域下方雾滴聚集较为密集,整体颜色也更深,向上逐渐稀疏,且雾滴的运动以水平方向为主。液相域(域3)沉积在容器的底部并呈现灰色,这是由液相域底部沸腾产生的高密度微气泡导致的,微气泡在浮力的作用下上浮,因此液相域中可以观测到向上的速度矢量。

    图  6  气液相阶段方腔内CO2流动过程(Td = 29.7 ℃, Tu = 29.34 ℃)
    Fig.  6  CO2 flow process in square cavity in gas-liquid phase (Td = 29.7 ℃, Tu = 29.34 ℃)

    随着方腔整体温度的不断降低,流动分层现象会发生改变。当温度降低至Td = 29.6 ℃、Tu = 29.24 ℃时,压力约为7.12 MPa,Pr ≈ 11.27,Ra ≈ 5.42 × 109,如图7(a)所示,方腔流动的液相域(域3)高度明显上升,且气相液滴生成域(域1)中絮状羽流消失,二氧化碳在顶部的低温壁面冷凝形成较大尺寸的液滴,雾滴聚集域(域2)中的雾滴密度明显降低。当温度降低至Td = 29.6 ℃、Tu = 29.20 ℃时,压力约为7.12 MPa,Pr ≈ 9.81,Ra ≈ 7.78 × 109,如图7(b)所示,液相域(域3)高度无明显变化,中间层雾滴聚集域(域2)的雾滴变得稀疏,并出现了空洞区(域4),雾滴聚集域的流体内部会出现左右2个大涡流,气流裹挟着雾滴聚集由中间向上运动,并在域1与域2交界处向四面散开来。当温度降低至Td = 29.3 ℃、Tu = 29.00 ℃时,压力约为7.08 MPa,Pr ≈ 10.00,Ra ≈ 3.95 × 109,如图7(c)所示,气相雾滴聚集域不断向上扩展,此时方腔内的流动由3层流动结构转变为2层流动结构,在液相域内出现更为显著的水平运动,由于顶部低温端的冷凝液滴体积随着温度的降低不断增大,下落速度也在增加,随着气态CO2不断凝结,底部的气液界面略有上升。

    图  7  气液分层
    Fig.  7  Gas-liquid stratification

    随着温度的降低,雾滴持续聚团冷凝,在重力的作用下滴落。当Td = 29.1 ℃、Tu = 28.80 ℃时,压力约为7.04 MPa,Pr ≈ 8.07,Ra ≈ 4.75 × 109,如图8所示,气相雾滴聚集域中雾滴逐渐消弭,气相变得清澈,附着在壁面上的冷凝液滴体积随温度的降低而增大。液相为沸腾与热对流的耦合流动,通过液相沸腾产生的微气泡可以反映其内部流动。液相域的流动为无规则非定常流动,且在底部的热壁面可明显观测到喷射状的羽流结构。

    图  8  气液相完全分离(Td = 29.1 ℃, Tu = 28.80 ℃)
    Fig.  8  Complete separation of gas-liquid phases (Td = 29.1 ℃, Tu = 28.80 ℃)

    随着时间的推移,温度降低到室温(约20 ℃),液态二氧化碳不再沸腾,气态二氧化碳不再冷凝,两相达到平衡。此时方腔内呈现出稳定的气液相共存状态,如图9所示。

    图  9  气液相清澈
    Fig.  9  The gas-liquid phase is clear

    本文研究了透明方腔内的超临界二氧化碳在特定温差下降温过程的物态演化,观测了超临界流动、跨临界流动和气液两相流动3个阶段的RB对流物理图像和流动特点。

    在超临界流动阶段,浮力引起的流动主要表现为环状热对流和羽流结构,流动的形态对温差敏感。随着温差的增加,涡流的环流增强,且羽流结构区域增加。在跨临界流动阶段,超临界二氧化碳出现冷凝雾化的过程,雾滴最先在流场的底部形成蘑菇状羽流,在流场顶部冷凝形成较大尺寸的液滴。随着温度降低,雾滴占据整个流场,并跟随涡流速度场形成雾状环流。在气液两相流动阶段,气液相分离过程导致复杂的多层流动结构。在液相区为沸腾与热对流耦合的流动状态,而气相区又可细分为气相雾滴聚集域和气相液滴生成域。气相雾滴聚集域不断扩展并占满整个气相,而后随着雾滴的重力沉降,气相雾滴聚集域逐渐消失,最后呈现清澈的气相状态。随着温度降低,超临界二氧化碳经历雾化、分层、冷凝、相分离等复杂的物理过程,最终形成明显的气液界面。

    致谢:感谢中国载人航天工程对本文工作的大力支持。

  • 图  1   各种类型质量分析器的结构示意图

    Fig.  1   Structure diagrams of different types of analyzers

    图  2   多次反射飞行时间质量分析器的结构示意图

    Fig.  2   Structure diagrams of multiple reflection time of flight mass analyzers

    图  3   电子轰击电离源的原理示意图[55]

    Fig.  3   Schematic diagram of the electron ionization source[55]

    图  4   在线质谱仪所用的光源

    Fig.  4   Light sources for on-line mass spectrometry

    图  5   基于VUV−Kr灯的高性能电离源技术

    Fig.  5   High performance ionization source technologies based on VUV-Kr lamp

    图  6   石英取样喷嘴的实物图和结构示意图

    Fig.  6   Photograph and structure diagram of the quartz sampling nozzle

    图  7   PVC在共振增强多光子电离源和光电子电离源下的质谱图

    Fig.  7   Mass spectrum of PVC in a resonance enhanced multiphoton ionization source and photoelectron ionization source

    图  8   典型燃料下的火焰的光电离质谱图

    Fig.  8   Photoionization mass spectrum of flames under typical fuel

  • [1] 刘兵, 董丰硕, 刘瑞东, 等. 真空紫外光电离质谱技术进展及其在快速分析中的应用[J]. 分析测试学报, 2021, 40(2): 208–214. DOI: 10.3969/j.issn.1004-4957.2021.02.006

    LIU B, DONG F S, LIU R D, et al. Progress of vacuum ultraviolet photon ionization mass spectrometry and its application in on-line analysis[J]. Journal of Instrumental Analysis, 2021, 40(2): 208–214. doi: 10.3969/j.issn.1004-4957.2021.02.006

    [2]

    DANG M, LIU R D, DONG F S, et al. Vacuum ultraviolet photoionization on-line mass spectrometry: instrumentation developments and applications[J]. Trac-Trends in Analytical Chemistry, 2022, 149: 116542. doi: 10.1016/j.trac.2022.116542

    [3]

    DONG F S, LI H, LIU B, et al. Protonated acetone ion chemical ionization time-of-flight mass spectrometry for real-time measurement of atmospheric ammonia[J]. Journal of Environmental Sciences, 2022, 114: 66–74. doi: 10.1016/j.jes.2021.07.023

    [4]

    ZHU S N, YAN C, ZHENG J, et al. Observation and source apportionment of atmospheric alkaline gases in urban Beijing[J]. Environmental Science & Technology, 2022, 56(24): 17545–17555. doi: 10.1021/acs.est.2c03584.

    [5]

    COOL T A, MCILROY A, QI F, et al. Photoionization mass spectrometer for studies of flame chemistry with a synchrotron light source[J]. Review of Scientific Instruments, 2005, 76(9): 094102. doi: 10.1063/1.2010307

    [6]

    LI Y, ZHANG L, TIAN Z, et al. Experimental study of a fuel-rich premixed toluene flame at low pressure[J]. Energy & Fuels, 2009, 23(3): 1473–1485. doi: 10.1021/ef800902t

    [7]

    WANG S, WANG W M, LI H, et al. Rapid on-site detection of illegal drugs in complex matrix by thermal desorption acetone-assisted photoionization miniature ion trap mass spectrometer[J]. Analytical Chemistry, 2019, 91(6): 3845–3851. doi: 10.1021/acs.analchem.8b04168

    [8]

    CHEN W D, HOU K Y, HUA L, et al. Dopant-assisted reactive low temperature plasma probe for sensitive and specific detection of explosives[J]. Analyst, 2015, 140(17): 6025–6030. doi: 10.1039/c5an00816f

    [9]

    LIU B, TANG W X, LI H, et al. Point-of-care detection of sevoflurane anesthetics in exhaled breath using a miniature TOFMS for diagnosis of postoperative agitation symptoms in children[J]. Analyst, 2022, 147(11): 2484–2493. doi: 10.1039/d2an00479h

    [10]

    PRIETO M C, KOVTOUN V V, COTTER R J. Miniaturized linear time-of-flight mass spectrometer with pulsed extraction[J]. Journal of Mass Spectrometry, 2002, 37(11): 1158–1162. doi: 10.1002/jms.386

    [11] 周丽娟. 小型飞行时间质谱的开发及射频增强化学电离源的研制[D]. 长春: 吉林大学, 2018.

    ZHOU L J. Development of miniature flight time mass spectrometry and radiofrequency field enhanced chemical ionization[D]. Changchun: Jilin University, 2018.

    [12] 齐雅晨. 用于飞行时间质谱的膜进样及射频放电电离源的研究与应用[D]. 长春: 吉林大学, 2016.

    QI Y C. Development and application of membrane inlet time-of-flight mass spectrometry and radio frequency discharge ion source[D]. Changchun: Jilin University, 2016.

    [13] 李金旭. 便携式飞行时间质谱的研究及其在挥发性硫化物测量中的应用[D]. 长春: 吉林大学, 2015.

    LI J X. Development of a portable time-of-flight mass spectrometry and its application in the measurement of volatile sulfide[D]. Changchun: Jilin University, 2015.

    [14] 韩笑笑. 便携式TOFMS中VOCs快速富集冷阱研制及其应用研究[D]. 西安: 西安石油大学, 2018.

    H X X. Development and application of VOCs rapid enrichment cold trap in portable TOFMS[D]. Xi’an: Xi’an Shiyou University, 2018.

    [15] 李庆运. 光电离飞行时间质谱仪研制及其用于催化过程监测[D]. 长春: 吉林大学, 2016.

    LI Q Y. Development of photoionization time-of-flight mass spectrometer and its application for catalytic reaction monitoring[D]. Changchun: Jilin University, 2016.

    [16]

    GROSS J H. Mass Spectrometry[M]. Berlin: Springer Berlin Heidelberg, 2011. doi: 10.1007/978-3-642-10711-5.

    [17] 黄灿. 核心机理中C4组分的燃烧反应动力学机理研究[D]. 北京: 清华大学, 2019.

    HUANG C. Combustion kinetics of the C4 foundational fuel chemistry[D]. Beijing: Tsinghua University, 2019.

    [18] 黄燕. 氮气掺混的乙烯层流同轴扩散火焰温度场与组分浓度场测量[D]. 上海: 上海交通大学, 2018.

    HUANG Y. Two dimensional temperature and carbon dioxide concentration profiles of nitrogen added ethylene co-flow diffusion flames measured by mid-infrared direct absorption spectroscopy[D]. Shanghai: Shanghai Jiao Tong University, 2018.

    [19] 洪延姬, 宋俊玲, 饶伟, 等. 激光吸收光谱断层诊断技术测量燃烧流场研究进展[J]. 实验流体力学, 2018, 32(1): 43–54. DOI: 10.11729/syltlx20160177

    HONG Y J, SONG J L, RAO W, et al. Progress on tunable diode laser absorption tomography technique for combustion diagnotics[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 43–54. doi: 10.11729/syltlx20160177

    [20] 洪延姬. 燃烧场吸收光谱诊断技术研究进展[J]. 实验流体力学, 2014, 28(3): 12–25. DOI: 10.11729/syltlx2014ty02

    HONG Y J. Progress in absorption spectroscopy diagnosis techniques for combustion flowfields[J]. Journal of Experiments in Fluid Mechanics, 2014, 28(3): 12–25. doi: 10.11729/syltlx2014ty02

    [21] 娄春, 张鲁栋, 蒲旸, 等. 基于自发辐射分析的被动式燃烧诊断技术研究进展[J]. 实验流体力学, 2021, 35(1): 1–17. DOI: 10.11729/syltlx20200063

    LOU C, ZHANG L D, PU Y, et al. Research advances in passive techniques for combustion diagnostics based on analysis of spontaneous emission radiation[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 1–17. doi: 10.11729/syltlx20200063

    [22] 张大源, 李博, 高强, 等. 飞秒激光光谱技术在燃烧领域的应用[J]. 实验流体力学, 2018, 32(1): 1–10. DOI: 10.11729/syltlx20170141

    ZHANG D Y, LI B, GAO Q, et al. Application of femtosecond-laser spectrum technology in combustion field[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 1–10. doi: 10.11729/syltlx20170141

    [23] 刘训臣, 李玉阳, 周忠岳, 等. 光谱法和取样分析法在燃烧诊断研究中的应用[J]. 实验流体力学, 2016, 30(1): 43–54, 67. DOI: 10.11729/syltlx20150138

    LIU X C, LI Y Y, ZHOU Z Y, et al. Applications of laser spectroscopy and mass spectrometry in combustion diagnostics[J]. Journal of Experiments in Fluid Mechanics, 2016, 30(1): 43–54, 67. doi: 10.11729/syltlx20150138

    [24] 胡志云, 叶景峰, 张振荣, 等. 航空发动机地面试验激光燃烧诊断技术研究进展[J]. 实验流体力学, 2018, 32(1): 33–42. DOI: 10.11729/syltlx20170135

    HU Z Y, YE J F, ZHANG Z R, et al. Development of laser combustion diagnostic techniques for ground aero-engine testing[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(1): 33–42. doi: 10.11729/syltlx20170135

    [25] 赵龙. 柴油类燃料若干典型分子结构的燃烧反应动力学研究[D]. 合肥: 中国科学技术大学, 2016.

    ZHAO L. Kinetic studies on several typical molecular structures of diesel and biodiesel fuels[D]. Heifei: University of Science and Technology of China, 2016.

    [26] 卫立夏. 几种C3含氧化合物的真空紫外光电离及燃烧研究[D]. 合肥: 中国科学技术大学, 2006.

    WEI L X. Studies on VUV photoionization and combustion of some C3 oxygen-contained compounds[D]. Heifei: University of Science and Technology of China, 2006.

    [27] 赵高升. 新型常压复合等离子体电离源-小型离子阱质谱仪的研发与应用[D]. 杭州: 浙江大学, 2022.

    ZHAO G S. Development and application of a noval atmospheric composite plasma ion source-miniature ion trap mass spectrometer[D]. Hangzhou: Zhejiang University, 2022.

    [28] 刘兵. 便携式飞行时间质谱在现场快速分析中的应用[D]. 青岛: 山东大学, 2022.

    LIU B. Application of miniature time-of-flight mass spectrometer in on-line analysis[D]. Qingdao: Shandong University, 2022.

    [29] 董丰硕. 化学电离飞行时间质谱实时检测氨气和有机胺的研究与应用[D]. 青岛: 山东大学, 2022.

    DONG F S. Development and applications of chemical ionization time-of-flight spectrometry for real-time detection of ammonia and organic amines[D]. Qingdao: Shandong University, 2022.

    [30] 温作赢. 真空紫外光电离飞行时间质谱仪研制及其大气化学应用[D]. 合肥: 中国科学技术大学, 2020.

    WEN Z Y. Development of VUV photoionization time of flight mass spectrometer and its applications in atmospheric chemistry[D]. Heifei: University of Science and Technology of China, 2020.

    [31] 李庆运. 飞行时间质谱光电离源的研制及其应用[D]. 长春: 吉林大学, 2019.

    LI Q Y. The development of photoionization sources for time-of-flight mass spectrometry and its application[D]. Changchun: Jilin University, 2019.

    [32] 方向, 覃莉莉, 白岗. 四极杆质量分析器的研究现状及进展[J]. 质谱学报, 2005(4): 234–242.

    FANG X, Q L L, BAI G. An introduction to quadrupole mass filter[J]. Journal of Chinese Mass Spectrometry Society, 2005(4): 234–242.

    [33]

    BRUNNÉE C. The ideal mass analyzer: fact or fiction?[J]. International Journal of Mass Spectrometry and Ion Processes, 1987, 76(2): 125–237. doi: 10.1016/0168-1176(87)80030-7

    [34]

    SNYDER D T, PULLIAM C J, OUYANG Z, et al. Miniature and fieldable mass spectrometers: recent advances[J]. Analytical Chemistry, 2016, 88(1): 2–29. doi: 10.1021/acs.analchem.5b03070

    [35]

    ZUBAREV R A, MAKAROV A. Orbitrap mass spectrometry[J]. Analytical Chemistry, 2013, 85(11): 5288–5296. doi: 10.1021/ac4001223

    [36]

    SECCOMBE D P, REDDISH T J. Theoretical study of space focusing in linear time-of-flight mass spectrometers[J]. Review of Scientific Instruments, 2001, 72(2): 1330–1338. doi: 10.1063/1.1336824

    [37]

    SARUGAKU S, ARAKAWA M, TERASAKI A. Space focusing extensively spread ions in time-of-flight mass spectrometry by nonlinear ion acceleration[J]. International Journal of Mass Spectrometry, 2017, 414: 65–69. doi: 10.1016/j.ijms.2017.01.003

    [38]

    WANG T, CHU C, HUNG H, et al. Design parameters of dual-stage ion reflectrons[J]. Review of Scientific Instruments, 1994, 65(5): 1585–1589. doi: 10.1063/1.1144896

    [39]

    MAMYRIN B A, KARATAEV V I, SHMIKK D V, et al. The mass-reflectron, a new nonmagnetic time-of-flight mass spectrometer with high resolution[J]. Journal of Experimental and Theoretical Physics, 1973, 37(1): 45.

    [40]

    SUGIYAMA E, HARA A, UEMURA K. A quantitative analysis of serum sulfatide by matrix-assisted laser desorption ionization time-of-flight mass spectrometry with delayed ion extraction[J]. Analytical Biochemistry, 1999, 274(1): 90–97. doi: 10.1006/abio.1999.4245

    [41]

    WANG B H, HOPKINS C E, BELENKY A B, et al. Sequencing of modified oligonucleotides using in-source fragmentation and delayed pulsed ion extraction matrix-assisted laser desorption ionization time-of-flight mass spectrometry[J]. International Journal of Mass Spectrometry and Ion Processes, 1997, 169-170: 331–350. doi: 10.1016/S0168-1176(97)00232-2

    [42]

    MOWAT I A, DONOVAN R J, MAIER R R J. Enhanced cationization of polymers using delayed ion extraction with matrix-assisted laser desorption/ionization[J]. Rapid Communications in Mass Spectrometry, 1997, 11(1): 89–98. doi: 10.1002/(SICI)1097-0231(19970115)11:1<89::AID-RCM810>3.0.CO;2-G

    [43]

    GUILHAUS M, SELBY D, MLYNSKI V. Orthogonal acceleration time-of-flight mass spectrometry[J]. Mass Spectrometry Reviews, 2000, 19(2): 65–107. doi: 10.1002/(SICI)1098-2787(2000)19:2<65::AID-MAS1>3.0.CO;2-E

    [44]

    YILDIRIM M, SISE O, DOGAN M, et al. Designing multi-field linear time-of-flight mass spectrometers with higher-order space focusing[J]. International Journal of Mass Spectrometry, 2010, 291(1): 1–12. doi: 10.1016/j.ijms.2009.12.014

    [45]

    TIAN Y L, WANG Y S, WANG J Y, et al. Designing a multi-reflection time-of-flight mass analyzer for LPT[J]. International Journal of Mass Spectrometry, 2016, 408: 28–32. doi: 10.1016/j.ijms.2016.08.013

    [46]

    WILEY W C, Mclaren I H. Time-of-flight mass spectrometer with improved resolution[J]. Review of Scientific Instruments, 1955, 26(12): 1150–1157. doi: 10.1063/1.1715212

    [47]

    DODONOV A F, KOZLOVSKI V I, SOULIMENKOV I V, et al. High-resolution electrospray ionization orthogonal-injection time-of-flight mass spectrometer[J]. European Journal of Mass Spectrometry, 2000, 6(6): 481–490. doi: 10.1255/ejms.378

    [48]

    TOYODA M, ISHIHARA M, YAMAGUCHI S, et al. Construction of a new multi-turn time-of-flight mass spectrometer[J]. Journal of Mass Spectrometry, 2000, 35(2): 163–167. doi: 10.1002/(SICI)1096-9888(200002)35:2<163::AID-JMS924>3.0.CO;2-G

    [49]

    TOYODA M, OKUMURA D, ISHIHARA M, et al. Multi-turn time-of-flight mass spectrometers with electrostatic sectors[J]. Journal of Mass Spectrometry, 2003, 38(11): 1125–1142. doi: 10.1002/jms.546

    [50]

    SATOH T, TSUNO H, IWANAGA M, et al. The design and characteristic features of a new time-of-flight mass spectrometer with a spiral ion trajectory[J]. Journal of the American Society for Mass Spectrometry, 2005, 16(12): 1969–1975. doi: 10.1016/j.jasms.2005.08.005

    [51]

    SATOH T, TSUNO H, IWANAGA M, et al. A new spiral time-of-flight mass spectrometer for high mass analysis[J]. Journal of the Mass Spectrometry Society of Japan, 2006, 54(1): 11–17. doi: 10.5702/massspec.54.11

    [52]

    WOLLNIK H, CASARES A. An energy-isochronous multi-pass time-of-flight mass spectrometer consisting of two coaxial electrostatic mirrors[J]. International Journal of Mass Spectrometry, 2003, 227(2): 217–222. doi: 10.1016/S1387-3806(03)00127-1

    [53]

    DICKEL T, PLASS W R, BECKER A, et al. A high-performance multiple-reflection time-of-flight mass spectrometer and isobar separator for the research with exotic nuclei[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 777: 172–188. doi: 10.1016/j.nima.2014.12.094

    [54]

    VERENTCHIKOV A N, YAVOR M I, HASIN Y I, et al. Multireflection planar time-of-flight mass analyzer. I: an analyzer for a parallel tandem spectrometer[J]. Technical Physics, 2005, 50(1): 73–81. doi: 10.1134/1.1854827

    [55] 李函蔚. 质谱光电离/光致化学电离源研究及 VOCs 在线检测应用[D]. 长春: 吉林大学, 2023.

    LI H W. The Development of Mass Spectrometry Photoionization/Photochemical Ionization Sources and Its Applications for Online VOCs Analysis [D]. Changchun: Jilin University, 2023.

    [56]

    NIER A O. Some reflections on the early days of mass spectrometry at the university of minnesota[J]. International Journal of Mass Spectrometry and Ion Processes, 1990, 100: 1–13. doi: 10.1016/0168-1176(90)85063-8

    [57]

    STEIN S E, HELLER D N. On the risk of false positive identification using multiple ion monitoring in qualitative mass spectrometry: large-scale intercomparisons with a comprehensive mass spectral library[J]. Journal of The American Society for Mass Spectrometry, 2006, 17(6): 823–835. doi: 10.1016/j.jasms.2006.02.021

    [58]

    STEIN S E, PIERRE A, LIAS S G. Comparative evaluations of mass spectral databases[J]. Journal of the American Society for Mass Spectrometry, 1991, 2(5): 441–443. doi: 10.1016/1044-0305(91)85012-U

    [59]

    MÜHLBERGER F, ZIMMERMANN R, KETTRUP A. A mobile mass spectrometer for comprehensive on-line analysis of trace and bulk components of complex gas mixtures: parallel application of the laser-based ionization methods VUV single-photon ionization, resonant multiphoton ionization, and laser-induced electron impact ionization[J]. Analytical Chemistry, 2001, 73(15): 3590–3604. doi: 10.1021/ac010023b

    [60]

    SHI Y J, LIPSON R H. An overview of organic molecule soft ionization using vacuum ultraviolet laser radiation[J]. Canadian Journal of Chemistry, 2005, 83(11): 1891–1902. doi: 10.1139/v05-193

    [61]

    MÜHLBERGER F, WIESER J, ULRICH A, et al. Single photon ionization (SPI) via incoherent VUV-excimer light: robust and compact time-of-flight mass spectrometer for on-line, real-time process gas analysis[J]. Analytical Chemistry, 2002, 74(15): 3790–3801. doi: 10.1021/ac0200825

    [62] 温作赢, 顾学军, 林晓晓, 等. 真空紫外光电离质谱及其在大气化学中的应用研究[J]. 质谱学报, 2023, 44(2): 181–196. DOI: 10.7538/zpxb.2022.0189

    WEN Z Y, GU X J, LIN X X, et al. acuum ultraviolet photoionization mass spectrometry and its wide applications in atmospheric chemistry[J]. Journal of Chinese Mass Spectrometry Society, 2023, 44(2): 181–196. doi: 10.7538/zpxb.2022.0189

    [63]

    YAP Y K, INAGAKI M, NAKAJIMA S, et al. High-power fourth-and fifth-harmonic generation of a Nd: YAG laser by means of a CsLiB6O10[J]. Optics Letters, 1996, 21(17): 1348–1350. doi: 10.1364/OL.21.001348

    [64] 李奇峰, 汪华, 石勇, 等. 双光子共振四波差频产生的真空紫外激光特性研究[J]. 化学物理学报, 2004(3): 333–338.

    LI Q F, WANG H, SHI Y, et al. Characteristic study on VUV generated by two-photon resonant four wave mxing in xenon[J]. Chinese Journal of Chemical Physics, 2004(3): 333–338.

    [65]

    GEHM C, STREIBEL T, EHLERT S, et al. Development and optimization of an external-membrane introduction photoionization mass spectrometer for the fast analysis of (polycyclic) aromatic compounds in environmental and process waters[J]. Analytical Chemistry, 2019, 91(24): 15547–15554. doi: 10.1021/acs.analchem.9b03480

    [66] 贾良元, 周忠岳, 李玉阳, 等. 基于同步辐射光电离质谱的燃烧与能源研究新方法[J]. 中国科学: 化学, 2013, 43(12): 1686–1699. doi: 10.1360/032013-246
    [67] 潘洋, 张泰昌, 齐飞. 同步辐射单光子电离技术在燃烧和其他研究中的应用[C]//长三角光子科技创新论坛暨2006年安徽博士科技论坛论文集. 2006: 554-558.
    [68] 齐飞. 同步辐射真空紫外单光子电离技术及其应用[J]. 中国科学技术大学学报, 2007(Z1): 414–425.

    QI F. Synchrotron radiation VUV single-photon ionization technique and its applications[J]. Journal of University of Science and Technology of China, 2007(Z1): 414–425.

    [69] 北京同步辐射装置介绍[J]. 现代物理知识, 2008(2): 41.
    [70] 吴旭, 田顺强, 张文志. 上海同步辐射光源工作点稳定性研究[J]. 原子能科学技术, 2022, 56(9): 1815–1820. DOI: 10.7538/yzk.2022.youxian.0349

    WU X, TIAN S Q, ZHANG W Z. Study on tune stability of Shanghai synchrotron radiation facility[J]. Atomic Energy Science and Technology, 2022, 56(9): 1815–1820. doi: 10.7538/yzk.2022.youxian.0349

    [71] 张国斌, 胡胜生, 封东来. 合肥光源[J]. 现代物理知识, 2020, 32(03): 3–9. doi: 10.13405/j.cnki.xdwz2020.03.002
    [72] 周忠岳, 杨玖重, 潘洋, 等. 同步辐射真空紫外光电离质谱在燃烧和催化研究中的应用进展[J]. 质谱学报, 2021, 42(5): 598–608. DOI: 10.7538/zpxb.2021.0149

    ZHOU Z Y, YANG J Z, PAN Y, et al. Recent applications of synchrotron vacuum ultraviolet photoionization mass spectrometry in combustion and catalysis research[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(5): 598–608. doi: 10.7538/zpxb.2021.0149

    [73]

    NORMILE D. Unique free electron laser laboratory opens in China[J]. Science, 2017, 355(6322): 235–235. doi: 10.1126/science.355.6322.235

    [74] 余永, 李钦明, 杨家岳, 等. 大连极紫外相干光源[J]. 中国激光, 2019, 46(1): 43–50. DOI: 10.3788/CJL201946.0100005

    YU Y, LI Q M, YANG J Y, et al. Dalian extreme ultraviolet coherent light source[J]. Chinese Journal of Lasers, 2019, 46(1): 43–50. doi: 10.3788/CJL201946.0100005

    [75]

    LI C, WEI S, DU X, et al. On-line spectral diagnostic system for Dalian Coherent Light Source[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment, 2015, 783: 65–67. doi: 10.1016/j.nima.2015.01.089

    [76] 谭国斌, 高伟, 黄正旭, 等. 真空紫外灯单光子电离源飞行时间质谱仪的研制[J]. 分析化学, 2011, 39(10): 1470–1475. doi: 10.3724/SP.J.1096.2011.01470
    [77] 王健, 胡永华, 田振峰, 等. 真空紫外灯电离源飞行时间质谱仪的研制及应用[J]. 分析试验室, 2016, 35(10): 1236–1240. doi: 10.13595/j.cnki.issn1000-0720.2016.0279
    [78] 赵振堂, 戴志敏, 张文志, 等. 上海粒子加速器大科学装置概述[J]. 复旦学报(自然科学版), 2023, 62(03): 293–309.
    [79] 李庆运, 花磊, 蒋吉春, 等. 用于催化过程在线监测的高分辨光电离飞行时间质谱仪的研制和应用[J]. 分析化学, 2015, 43(10): 1531–1537. doi: 10.11895/j.issn.0253-3820.150454
    [80] 陈文东, 侯可勇, 陈平, 等. 单光子/光电子在线质谱实时分析聚氯乙烯热分解/燃烧产物[J]. 环境科学, 2013, 34(1): 34–38. DOI: 10.13227/j.hjkx.2013.01.018

    CHEN W D, HOU K Y, CHEN P, et al. Real-time analysis of polyvinyl chloride thermal decomposition/combustion products with single photon ionization/photoelectron ionization online mass spectrometer[J]. Environmental Science, 2013, 34(1): 34–38. doi: 10.13227/j.hjkx.2013.01.018

    [81] 谢园园, 花磊, 侯可勇, 等. 单光子电离质谱法在线分析牙膏中的香精物质[J]. 分析化学, 2012, 40(12): 1883–1889. doi: 10.3724/SP.J.1096.2012.20542
    [82] 谢园园, 花磊, 陈平, 等. 气相色谱-单光子电离飞行时间质谱的联用及在柴油组分表征中的应用[J]. 色谱, 2015, 33(2): 188–194. DOI: 10.3724/SP.J.1123.2014.10028

    XIE Y Y, HUA L, CHEN P, et al. Coupling of gas chromatography with single photon ionization time-of-flight mass spectrometry and its application to characterization of compounds in diesel[J]. Chinese Journal of Chromatography, 2015, 33(2): 188–194. doi: 10.3724/SP.J.1123.2014.10028

    [83]

    WU Q, HUA L, HOU K, et al. Vacuum ultraviolet lamp based magnetic field enhanced photoelectron ionization and single photon ionization source for online time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(23): 8992–8998. doi: 10.1021/ac201791n

    [84]

    HUA L, WU Q, HOU K, et al. Single photon ionization and chemical ionization combined ion source based on a vacuum ultraviolet lamp for orthogonal acceleration time-of-flight mass spectrometry[J]. Analytical Chemistry, 2011, 83(13): 5309–5316. doi: 10.1021/ac200742r

    [85]

    HUA L, HOU K, CHEN P, et al. Realization of in-source collision-induced dissociation in single-photon ionization time-of-flight mass spectrometry and its application for differentiation of isobaric compounds[J]. Analytical Chemistry, 2015, 87(4): 2427–2433. doi: 10.1021/ac5043768

    [86]

    CHEN P, HOU K Y, HUA L, et al. Quasi-trapping chemical ionization source based on a commercial VUV lamp for time-of-flight mass spectrometry[J]. Analytical Chemistry, 2014, 86(3): 1332–1336. doi: 10.1021/ac403132k

    [87] 齐雅晨, 刘巍, 蒋吉春, 等. 无窗射频放电单光子电离质谱在线监测氯苯的研究[J]. 质谱学报, 2015, 36(6): 506–512. DOI: 10.7538/zpxb.2015.36.06.0506

    QI Y C, LIU W, JIANG J C, et al. On-line analysis of cholrobenzenes by windowless RF discharge signal photon ionization mass spectrometer[J]. Journal of Chinese Mass Spectrometry Society, 2015, 36(6): 506–512. doi: 10.7538/zpxb.2015.36.06.0506

    [88] 张晓愿. 两种典型醇类燃料燃烧的实验和模型研究[D]. 合肥: 中国科学技术大学, 2016.

    ZHANG X Y. Experimental and kinetic modeling study of two typical alcohol fuels combustion[D]. Heifei: University of Science and Technology of China, 2016.

    [89] 李天宇. 热解气氛下若干关键芳烃生成的燃料协同效应研究[D]. 合肥: 中国科学技术大学, 2017.

    LI T Y. Study of synergistic effect during the formation of some key aromatic hydrocarbons in pyrolysis atmosphere[D]. Heifei: University of Science and Technology of China, 2017.

    [90] 孙雯禹. 几种新型含氧燃料的燃烧反应动力学研究[D]. 北京: 清华大学, 2018.

    SUN W Y. Investigations into the combustion kinetics of several novel oxygenated fuels[D]. Beijing: Tsinghua University, 2018.

    [91]

    A. TAATJES C, HANSEN N, L. OSBORN D, et al. “Imaging” combustion chemistry via multiplexed synchrotron-photoionization mass spectrometry[J]. Physical Chemistry Chemical Physics, 2008, 10(1): 20–34. doi: 10.1039/B713460F

    [92]

    LI W, WANG G, LI Y, et al. Experimental and kinetic modeling investigation on pyrolysis and combustion of n-butane and i-butane at various pressures[J]. Combustion and Flame, 2018, 191: 126–141. doi: 10.1016/j.combustflame.2018.01.002

    [93]

    MOSHAMMER K, JASPER A W, POPOLAN-VAIDA D M, et al. Quantification of the keto-hydroperoxide (HOOCH2OCHO) and other elusive intermediates during low-temperature oxidation of dimethyl ether[J]. The Journal of Physical Chemistry A, 2016, 120(40): 7890–7901. doi: 10.1021/acs.jpca.6b06634

    [94]

    HANSEN N, COOL T A, WESTMORELAND P R, et al. Recent contributions of flame-sampling molecular-beam mass spectrometry to a fundamental understanding of combustion chemistry[J]. Progress in Energy and Combustion Science, 2009, 35(2): 168–191. doi: 10.1016/j.pecs.2008.10.001

    [95] 闫博, 李猛, 陈力, 等. 基于滤波瑞利散射技术的带压燃烧场温度测量实验研究[J]. 实验流体力学, 2019, 33(4): 27–32. DOI: 10.11729/syltlx20180168

    YAN B, LI M, CHEN L, et al. Experimental study on temperature measurement of high pressure combustion based on filtered rayleigh scattering technology[J]. Journal of Experiments in Fluid Mechanics, 2019, 33(4): 27–32. doi: 10.11729/syltlx20180168

    [96] 刘高恩, 王华芳, 吕品, 等. 飞机发动机排气污染物的测量[J]. 航空动力学报, 2003(3): 348–352. DOI: 10.13224/j.cnki.jasp.2003.03.008

    LIU G E, WANG H F, LV P, et al. Gas turbine engine emissions measurement[J]. Journal of Aerospace Power, 2003(3): 348–352. doi: 10.13224/j.cnki.jasp.2003.03.008

    [97] 王明瑞, 肖阳, 韩冰, 等. 航空燃气涡轮发动机燃气分析测试及计算方法[J]. 航空动力学报, 2015, 30(11): 2568–2574. DOI: 10.13224/j.cnki.jasp.2015.11.002

    WANG M R, XIAO Y, HAN B, et al. Gas analysis test and calculation method of aeroengine[J]. Journal of Aerospace Power, 2015, 30(11): 2568–2574. doi: 10.13224/j.cnki.jasp.2015.11.002

    [98] 李乐, 索建秦, 于涵, 等. 燃气分析系统优化设计及应用研究[J]. 西北工业大学学报, 2020, 38(1): 104–113. DOI: 10.1051/jnwpu/20203810104

    LI L, SUO J Q, YU H. Optimization design and application research of gas analysis system[J]. Journal of Northwestern Polytechnical University, 2020, 38(1): 104–113. doi: 10.1051/jnwpu/20203810104

    [99]

    ADAM T, STREIBEL T, MITSCHKE S, et al. Application of time-of-flight mass spectrometry with laser-based photoionization methods for analytical pyrolysis of PVC and tobacco[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74(1): 454–464. doi: 10.1016/j.jaap.2004.11.021

    [100]

    ZHOU Z Y, WANG Y, TANG X F, et al. A new apparatus for study of pressure-dependent laminar premixed flames with vacuum ultraviolet photoionization mass spectrometry[J]. Review of Scientific Instruments, 2013, 84(1): 014101. doi: 10.1063/1.4773541

    [101]

    YANG B, OSSWALD P, LI Y, et al. Identification of combustion intermediates in isomeric fuel-rich premixed butanol-oxygen flames at low pressure[J]. Combustion and Flame, 2007, 148(4): 198–209. doi: 10.1016/j.combustflame.2006.12.001

    [102]

    YANG R, YANG B, HUANG C Q, et al. VUV photoionization study of the allyl radical from premixed gasoline/oxygen flame[J]. Chinese Journal of Chemical Physics, 2006(01): 25–28 + 93.

    [103]

    LI Y, QI F. Recent applications of synchrotron VUV photoionization mass spectrometry: insight into combustion chemistry[J]. Accounts of Chemical Research, 2010, 43(1): 68–78. doi: 10.1021/ar900130b

    [104] 李亚娟, 王明瑞, 韩冰, 等. 燃气分析法测试燃气轮机主燃烧室燃烧效率、气态污染物误差分析[J]. 航空动力学报, 2017, 32(5): 1051–1057. DOI: 10.13224/j.cnki.jasp.2017.05.004

    LI Y J, WANG M R, HAN B, et al. Gas turbine primary combustor error analysis of combustion efficiency and exhaust emission using gas analysis method[J]. Journal of Aerospace Power, 2017, 32(5): 1051–1057. doi: 10.13224/j.cnki.jasp.2017.05.004

    [105] 王明瑞, 王振华, 韩冰, 等. 航空发动机主燃烧室高温测试技术[J]. 航空发动机, 2016, 42(5): 87–93. DOI: 10.13477/j.cnki.aeroengine.2016.05.015

    WANG M R, WANG Z H, HAN B, et al. High temperature measurement technology for main combustion chamber of aeroengine[J]. Aeroengine, 2016, 42(5): 87–93. doi: 10.13477/j.cnki.aeroengine.2016.05.015

    [106]

    STRUCKMEIER U, OSSWALD P, KASPER T, et al. Sampling probe influences on temperature and species concentrations in molecular beam mass spectroscopic investigations of flat premixed low-pressure flames[J]. Zeitschrift für Physikalische Chemie, 2009, 223(4-5): 503–537. doi: 10.1524/zpch.2009.6049

    [107]

    SKEEN S A, YANG B, MICHELSEN H A, et al. Studies of laminar opposed-flow diffusion flames of acetylene at low-pressures with photoionization mass spectrometry[J]. Proceedings of the Combustion Institute, 2013, 34(1): 1067–1075. doi: 10.1016/j.proci.2012.06.075

    [108]

    TAO T, SUN W, HANSEN N, et al. Exploring the negative temperature coefficient behavior of acetaldehyde based on detailed intermediate measurements in a jet-stirred reactor[J]. Combustion and Flame, 2018, 192: 120–129. doi: 10.1016/j.combustflame.2018.01.048

    [109]

    OSSWALD P, GÜLDENBERG H, KOHSE-HÖINGHAUS K, et al. Combustion of butanol isomers-a detailed molecular beam mass spectrometry investigation of their flame chemistry[J]. Combustion and Flame, 2011, 158(1): 2–15. doi: 10.1016/j.combustflame.2010.06.003

    [110] 陶涛. 宽范围下乙醛燃烧反应动力学的实验与模型研究[D]. 北京: 清华大学, 2018.

    TAO T. Experimental and modeling investigations on the combustion kinetics of acetaldehyde under a wide range conditions[D]. Beijing: Tsinghua University, 2018.

    [111]

    LIU D, TOGBÉ C, TRAN L S, et al. Combustion chemistry and flame structure of furan group biofuels using molecular-beam mass spectrometry and gas chromatography-Part I: Furan[J]. Combustion and Flame, 2014, 161(3): 748–765. doi: 10.1016/j.combustflame.2013.05.028

    [112]

    SCHENK M, LEON L, MOSHAMMER K, et al. Detailed mass spectrometric and modeling study of isomeric butene flames[J]. Combustion and Flame, 2013, 160(3): 487–503. doi: 10.1016/j.combustflame.2012.10.023

  • 期刊类型引用(0)

    其他类型引用(2)

图(8)
计量
  • 文章访问数:  248
  • HTML全文浏览量:  93
  • PDF下载量:  83
  • 被引次数: 2
出版历程
  • 收稿日期:  2022-12-24
  • 修回日期:  2023-02-09
  • 录用日期:  2023-02-12
  • 刊出日期:  2023-10-29

目录

/

返回文章
返回
x 关闭 永久关闭