留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

纳米流体燃料性能调控研究进展

高毅 徐星星 赵子龙 周帅 刘佩进 敖文

高毅, 徐星星, 赵子龙, 等. 纳米流体燃料性能调控研究进展[J]. 实验流体力学, doi: 10.11729/syltlx20220119
引用本文: 高毅, 徐星星, 赵子龙, 等. 纳米流体燃料性能调控研究进展[J]. 实验流体力学, doi: 10.11729/syltlx20220119
GAO Y, XU X X, ZHAO Z L, et al. Research progress of improving nanofluid fuel performance[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220119
Citation: GAO Y, XU X X, ZHAO Z L, et al. Research progress of improving nanofluid fuel performance[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220119

纳米流体燃料性能调控研究进展

doi: 10.11729/syltlx20220119
基金项目: 国防科技重点实验室稳定支持课题(××××1002)
详细信息
    作者简介:

    高毅:(1998—),男,安徽阜阳人,硕士研究生,研究方向:纳米流体燃料改性。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学燃烧、热结构与内流场重点实验室(710072)。E-mail:gy0704@mail.nwpu.edu.cn

    通讯作者:

    E-mail:aw@nwpu.edu.cn

  • 中图分类号: V231.1;V231.2

Research progress of improving nanofluid fuel performance

  • 摘要: 纳米流体燃料是将纳米颗粒添加至液体燃料中形成的一种悬浮液,具有高能量密度、点火延迟时间短等优点,具有改善燃料燃烧特性的潜力。为探寻更为有效的纳米流体燃料性能调控方法,本文回顾了近年来国内外纳米流体燃料性能调控的研究进展,主要介绍了纳米流体的稳定性能、流变性能、蒸发性能、点火性能和燃烧性能调控的研究成果,分析了各种物理和化学调节方法及其基本原理。添加表面活性剂和金属包覆改性是改善纳米流体燃料稳定性能和流变性能的主要方法;点火性能和燃烧性能的调控主要基于提高燃料液滴热传导和热辐射吸收能力、促进金属颗粒自身释热等途径,主要包括添加纳米金属颗粒、纳米金属氧化物及新型亚稳态分子间复合物等。纳米流体燃料的下一步研究应重点围绕拓宽纳米流体燃料界限、探索新型表面活性剂、建立纳米流体燃料点火燃烧理论体系等方面展开。
  • 图  1  纳米流体燃料的关键性能

    Figure  1.  Key properties in nanofluid fuels

    图  2  纳米流体燃料的团聚机制

    Figure  2.  Agglomeration mechanism of nanofluid fuels

    图  3  不同纳米流体燃料稳定性比较

    Figure  3.  Comparison of stability of different nanofluid fuels

    图  4  纳米流体燃料黏度影响规律

    Figure  4.  Influence of different parameters on the viscosity of nano fluid fuel

    图  5  不同温度下0.1%、0.5%和1.0%纳米铝–煤油的蒸发速率[21]

    Figure  5.  Evaporation rates of 0.1%, 0.5% and 1.0% nano-aluminum-kerosene at different temperatures

    图  6  微爆示意图[29]

    Figure  6.  Schematic representation of the ejection event [29]

    图  7  不同温度下庚烷基纳米流体燃料液滴与纯庚烷、稳定庚烷液滴的蒸发率比较[34]

    Figure  7.  Comparison of the evaporation rates of heptane-based nanofluid fuel droplets with pure and stabilized heptane droplets under different temperatures

    图  8  纳米流体燃料点火性能调控规律

    Figure  8.  Regulation of ignition performance of nano fluid fuel

    图  9  纳米流体燃料液滴燃烧能量传递模型

    Figure  9.  Energy transfer model of nanofluid fuel droplet combustion

    图  10  PDA包覆层在n–Al/RP–3液滴燃烧过程中的作用机理[77]

    Figure  10.  Mechanistic diagram of the effect of PDA cladding layer in the combustion process of n–Al/RP–3 nanofluid fuel droplets [77]

    图  11  n–Al@PDA@CuO对煤油液滴点火燃烧性能调控机理[77]

    Figure  11.  Mechanism of PDA coating in the combustion process of n–Al/RP–3 nanofluid fuel droplets[77]

    图  12  装有不同样品的倒置试剂瓶[82]

    Figure  12.  Inverted bottles filled with different samples[82]

    表  1  纳米流体燃料常用基液、纳米颗粒和表面活性剂

    Table  1.   Base liquid, nano particle and surfactant commonly used in nano fluid fuel

    基液纳米颗粒纳米颗粒尺寸/nm表面活性剂文献来源
    煤油
    n–Al/CuO/NC等 TOPO [17]
    n–Al 80 OA [21-22]
    n–Al 70 OA [1]
    CuO/NC、KIO4/NC、MgO/NC等 TOPO [16]
    n–Al 80 OA [23]
    硝基甲烷(NM)
    n–SiO2n–Al2O3 [24]
    n–Al,SiO2,TiO2 100,200,20 [25]
    正十四烷(C14) CNTs,CeO2,Co3O4 20和50 CTAB [18]
    正癸烷(C10)
    n–Al 80 Span 80 [26]
    n–B 80 Span 80 [27]
    n–Al2O3 40 [28]
    CeO2,Ce2O3 25 Tween 85 [29]
    柴油
    n–Al,n–Al2O3 50 [30]
    n–Al2O3n–TiO2n–Fe3O4 80,50,45 [31]
    乙醇
    n–Al 80 Span 80 [26]
    n–Fe 80 Span 80 [27]
    SWCNTs 1~2 [20]
    MWCNTs 100 [20]
    CNPs 6 [20]
    n–Al,n–Al2O3 80 [32]
    n–Al 80 [15]
    TiO2 4~8 [33]
    CeO2,Ce2O3 25 Tween 85 [29]
    n–Al,n–SiO2 80 [11]
    n–Al,n–Ag,n–Al2O3n–SiO2n–Fe 80,35,25,80,25 [34]
    正庚烷
    n–Al 80 Span 85 [35]
    n–Al 80 OA [36]
    JP10
    n–B 80 OA,TOP,TOPO,TPP等 [37]
    n–Al,NC,n–Al/NC 80,1000~6000,2000 TOPO [8]
    APcoated Al Tween 85 [19]
    n–Al 80 Tween 85 [5]
    注:NC:硝酸纤维素;CNTs:碳纳米管;SWCNTs:单壁碳纳米管;MWCNTs:多壁碳纳米管;CNTs:碳纳米颗粒;AP:高氯酸铵;OA:油酸;CTAB:十六烷基三甲基溴化铵;Span 80:山梨醇酐单油酸酯;Span 85:山梨醇酐三油酸酯;Tween 85:聚甲醛山梨醇三油酸酯;TOP:三正辛基膦;TOPO:三正辛基氧化膦;TPP:有机胺酯。
    下载: 导出CSV

    表  2  改善纳米流体燃料燃烧特性的典型研究成果

    Table  2.   Typical results of improving the burning characteristic of nanofluid fuels

    基液改性方法结果文献来源
    乙醇
    加入纳米铝颗粒;改变液滴粒径加入纳米铝颗粒(质量分数5%),燃烧速率提升140%[15]
    加入纳米石墨颗粒加入50 nm石墨颗粒(质量分数3%),燃烧速率提升62%[58]
    加入纳米铝和纳米SiO2颗粒纳米铝颗粒增强燃烧的效果强于纳米SiO2颗粒[9]
    加入纳米硼和纳米铁颗粒液滴燃烧结束后,纳米颗粒团聚成块[27]
    正庚烷加入纳米铝颗粒发生微爆,无纳米颗粒残余[36]
    正癸烷
    加入纳米硼和纳米铁颗粒液滴多次微爆,颗粒从液滴内飞出[27]
    加入纳米铝颗粒CO和NOx的排放减少[59]
    煤油加入纳米铝颗粒燃烧速率显著提升[23]
    JP−10
    加入AP包覆纳米铝颗粒不完全燃烧产生的碳氢化合物减少[19]
    加入纳米铝颗粒加入纳米铝颗粒,燃烧效率为95%,密度比冲提升15%[4]
    火箭煤油加入碳纳米颗粒、多壁碳纳米管、石墨烯纳米片加入碳纳米管(质量分数0.25%),燃烧速率最高[60]
    硝基甲烷
    加入纳米SiO2和Al2O3颗粒;改变环境压力纳米颗粒质量分数低于1.0%时,5.24 MPa下燃烧速率提升超过50%[24]
    加入纳米铝、纳米TiO2和纳米SiO2颗粒燃烧速率提升,压强指数增大[25]
    柴油与生物柴油混合物
    加入纳米氧化石墨烯颗粒CO排放减少,CO2和NOx排放分别增多7%和4%~9%[61]
    加入纳米Al2O3CO和NOx排放显著减少[62]
    加入纳米Al2O3CO和烟雾排放分别减少48.43%和22.84%[63]
    加入多壁碳纳米管NOx、CO、HC的排放减少[64]
    加入纳米ZnO,改变颗粒粒径加入20 nm颗粒,排放减少;加入40 nm颗粒,排放增多[65]
    下载: 导出CSV
  • [1] KIM D M, BAEK S W, YOON J. Ignition characteristics of kerosene droplets with the addition of aluminum nanoparticles at elevated temperature and pressure[J]. Combustion and Flame, 2016, 173: 106–113. doi: 10.1016/j.combustflame.2016.07.033
    [2] WANG X R, ZHANG J, MA Y, et al. A comprehensive review on the properties of nanofluid fuel and its additive effects to compression ignition engines[J]. Applied Surface Science, 2020, 504: 144581. doi: 10.1016/j.apsusc.2019.144581
    [3] KIM D C, KIM J H, WOO J K, et al. A new iron-nanofluid as fuel additive for particulate matter reduction in heavy fuel oil-fired boiler facility[J]. Asian Journal of Chemistry, 2008, 20(7): 5767–5775.
    [4] E X-T-F, PAN L, WANG F, et al. Al-nanoparticle-containing nanofluid fuel: synthesis, stability, properties, and propulsion performance[J]. Industrial & Engineering Chemistry Research, 2016, 55(10): 2738–2745. doi: 10.1021/acs.iecr.6b00043
    [5] LIU J Z, CHEN B H, WU T T, et al. Ignition and combustion characteristics and agglomerate evolution mechanism of aluminum in nAl/JP–10 nanofluid fuel[J]. Journal of Thermal Analysis and Calorimetry, 2019, 137(4): 1369–1379. doi: 10.1007/s10973-019-08039-5
    [6] CHENG Z P, CHU X Z, YIN J Z, et al. Formation of composite fuels by coating aluminum powder with a cobalt nanocatalyst: enhanced heat release and catalytic performance[J]. Chemical Engineering Journal, 2020, 385: 123859. doi: 10.1016/j.cej.2019.123859
    [7] EL-SEESY A I, HASSAN H, OOKAWARA S. Influence of adding multiwalled carbon nanotubes to waste cooking oil biodiesel on the performance and emission characteristics of a diesel engine: an experimental investigation[J]. International Journal of Green Energy, 2019, 16(12): 901–916. doi: 10.1080/15435075.2019.1642895
    [8] GUERIERI P M, DELISIO J B, ZACHARIAH M R. Nanoaluminum/Nitrocellulose microparticle additive for burn enhancement of liquid fuels[J]. Combustion and Flame, 2017, 176: 220–228. doi: 10.1016/j.combustflame.2016.10.011
    [9] SIM H S, PLASCENCIA M A, VARGAS A, et al. Effects of inert and energetic nanoparticles on burning liquid ethanol droplets[J]. Combustion Science and Technology, 2019, 191(7): 1079–1100. doi: 10.1080/00102202.2018.1509857
    [10] XU Z, LOU W J, ZHAO G Q, et al. Cu nanoparticles decorated WS2 nanosheets as a lubricant additive for enhanced tribological performance[J]. RSC Advances, 2019, 9(14): 7786–7794. doi: 10.1039/c9ra00337a
    [11] SOUDAGAR M E M, NIK-GHAZALI N-N, KALAM M A, et al. The effect of nano-additives in diesel-biodiesel fuel blends: a comprehensive review on stability, engine performance and emission characteristics[J]. Energy Conversion and Management, 2018, 178: 146–177. doi: 10.1016/j.enconman.2018.10.019
    [12] SUNDARAM D S, PURI P, YANG V. A general theory of ignition and combustion of nano- and micron-sized aluminum particles[J]. Combustion and Flame, 2016, 169: 94–109. doi: 10.1016/j.combustflame.2016.04.005
    [13] 李鑫, 赵凤起, 郝海霞, 等. 不同类型微/纳米铝粉点火燃烧特性研究[J]. 兵工学报, 2014, 35(5): 640–647. doi: 10.3969/j.issn.1000-1093.2014.05.010

    LI X, ZHAO F Q, HAO H X, et al. Research on ignition and combustion properties of different micro/nano-aluminum powders[J]. Acta Armamentarii, 2014, 35(5): 640–647. doi: 10.3969/j.issn.1000-1093.2014.05.010
    [14] SHIN Y J, SHEN Y H. Preparation of coal slurry with organic solvents[J]. Chemosphere, 2007, 68(2): 389–393. doi: 10.1016/j.chemosphere.2006.12.049
    [15] TANVIR S, QIAO L. Effect of addition of energetic nanoparticles on droplet-burning rate of liquid fuels[J]. Journal of Propulsion and Power, 2015, 31(1): 408–415. doi: 10.2514/1.B35500
    [16] GUERIERI P M, JACOB R J, DeLISIO J B, et al. Stabilized microparticle aggregates of oxygen-containing nanoparticles in kerosene for enhanced droplet combustion[J]. Combustion and Flame, 2018, 187: 77–86. doi: 10.1016/j.combustflame.2017.08.026
    [17] GUERIERI P M, JACOB R J, WANG H Y, et al. Droplet combustion of kerosene augmented by stabilized nanoaluminum/oxidizer composite mesoparticles[J]. Combustion and Flame, 2020, 211: 1–7. doi: 10.1016/j.combustflame.2019.07.031
    [18] MEI D Q, SUN C, LI L C, et al. Evaporation characteristics of fuel sessile droplets with nanoparticles[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects, 2019, 41(6): 677–688. doi: 10.1080/15567036.2018.1520350
    [19] CHEN B H, LIU J Z, YANG W J, et al. Effect of ammonium perchlorate coating on the ignition and combustion characteristics of Al/JP–10 nanofluid fuel[J]. Combustion Science and Technology, 2020, 192(8): 1567–1581. doi: 10.1080/00102202.2019.1613385
    [20] GAN Y N, QIAO L. Optical properties and radiation-enhanced evaporation of nanofluid fuels containing carbon-based nanostructures[J]. Energy & Fuels, 2012, 26(7): 4224–4230. doi: 10.1021/ef300493m
    [21] JAVED I, BAEK S W, WAHEED K, et al. Evaporation characteristics of kerosene droplets with dilute concentrations of ligand-protected aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2013, 160(12): 2955–2963. doi: 10.1016/j.combustflame.2013.07.007
    [22] JAVED I, BAEK S W, WAHEED K. Effects of dense concentrations of aluminum nanoparticles on the evaporation behavior of kerosene droplet at elevated temperatures: the phenomenon of microexplosion[J]. Experimental Thermal and Fluid Science, 2014, 56: 33–44. doi: 10.1016/j.expthermflusci.2013.11.006
    [23] JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of kerosene droplets with dilute concentrations of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(3): 774–787. doi: 10.1016/j.combustflame.2014.08.018
    [24] SABOURIN J L, YETTER R A, PARIMI V S. Exploring the effects of nanostructured particles on liquid nitromethane combustion[J]. Journal of Propulsion and Power, 2010, 26(5): 1006–1015. doi: 10.2514/1.48579
    [25] McCOWN K W III, PETERSEN E L. Effects of nano-scale additives on the linear burning rate of nitromethane[J]. Combustion and Flame, 2014, 161(7): 1935–1943. doi: 10.1016/j.combustflame.2013.12.019
    [26] GAN Y N, QIAO L. Evaporation characteristics of fuel droplets with the addition of nanoparticles under natural and forced convections[J]. International Journal of Heat and Mass Transfer, 2011, 54(23-24): 4913–4922. doi: 10.1016/j.ijheatmasstransfer.2011.07.003
    [27] GAN Y N, LIM Y S, QIAO L. Combustion of nanofluid fuels with the addition of boron and iron particles at dilute and dense concentrations[J]. Combustion and Flame, 2012, 159(4): 1732–1740. doi: 10.1016/j.combustflame.2011.12.008
    [28] PANDEY K, CHATTOPADHYAY K, BASU S. Combustion dynamics of low vapour pressure nanofuel droplets[J]. Physics of Fluids, 2017, 29(7): 074102. doi: 10.1063/1.4991752
    [29] PANDEY K, BASU S. How boiling happens in nanofuel droplets[J]. Physics of Fluids, 2018, 30(10): 107103. doi: 10.1063/1.5048564
    [30] TYAGI H, PHELAN P E, PRASHER R, et al. Increased hot-plate ignition probability for nanoparticle-laden diesel fuel[J]. Nano Letters, 2008, 8(5): 1410–1416. doi: 10.1021/nl080277d
    [31] SHAMS Z, MOGHIMAN M. An experimental investigation of ignition probability of diesel fuel droplets with metal oxide nanoparticles[J]. Thermochimica Acta, 2017, 657: 79–85. doi: 10.1016/j.tca.2017.09.007
    [32] GAN Y N, QIAO L. Radiation-enhanced evaporation of ethanol fuel containing suspended metal nanoparticles[J]. International Journal of Heat and Mass Transfer, 2012, 55(21-22): 5777–5782. doi: 10.1016/j.ijheatmasstransfer.2012.05.074
    [33] MIGLANI A, BASU S. Effect of particle concentration on shape deformation and secondary atomization characteristics of a burning nanotitania dispersion droplet[J]. Journal of Heat Transfer, 2015, 137(10): 102001. doi: 10.1115/1.4030394
    [34] TANVIR S, JAIN S, QIAO L. Latent heat of vaporization of nanofluids: measurements and molecular dynamics simulations[J]. Journal of Applied Physics, 2015, 118(1): 014902. doi: 10.1063/1.4922967
    [35] JAVED I, BAEK S W, WAHEED K. Evaporation characteristics of heptane droplets with the addition of aluminum nanoparticles at elevated temperatures[J]. Combustion and Flame, 2013, 160(1): 170–183. doi: 10.1016/j.combustflame.2012.09.005
    [36] JAVED I, BAEK S W, WAHEED K. Autoignition and combustion characteristics of heptane droplets with the addition of aluminium nanoparticles at elevated temperatures[J]. Combustion and Flame, 2015, 162(1): 191–206. doi: 10.1016/j.combustflame.2014.07.015
    [37] E X-T-F, ZHI X M, ZHANG Y M, et al. Jet fuel containing ligand-protecting energetic nanoparticles: a case study of boron in JP–10[J]. Chemical Engineering Science, 2015, 129: 9–13. doi: 10.1016/j.ces.2015.02.018
    [38] SEKOAI P T, OUMA C N M, DU PREEZ S P, et al. Application of nanoparticles in biofuels: an overview[J]. Fuel, 2019, 237: 380–397. doi: 10.1016/j.fuel.2018.10.030
    [39] SAXENA V, KUMAR N, SAXENA V K. A comprehensive review on combustion and stability aspects of metal nanoparticles and its additive effect on diesel and biodiesel fuelled C. I. engine[J]. Renewable and Sustainable Energy Reviews, 2017, 70: 563–588. doi: 10.1016/j.rser.2016.11.067
    [40] WANG C, ZHANG X, SU M. Synthesis and thermal stability of Field’s alloy nanoparticles and nanofluid[J]. Materials Letters, 2017, 205: 6–9. doi: 10.1016/j.matlet.2017.06.051
    [41] LI S J, DU H Z, ZHUO Z, et al. Dispersion stability, physical properties, and electrostatic breakup of surfactant-loaded aluminum/n-decane nanofluid fuel: nanoparticle size effect[J]. Energy & Fuels, 2020, 34(1): 1082–1092. doi: 10.1021/acs.energyfuels.9b03332
    [42] MEHTA R N, CHAKRABORTY M, PARIKH P A. Nanofuels: Combustion, engine performance and emissions[J]. Fuel, 2014, 120: 91–97. doi: 10.1016/j.fuel.2013.12.008
    [43] VAN DEVENER B, ANDERSON S L. Breakdown and combustion of JP–10 fuel catalyzed by nanoparticulate CeO2 and Fe2O3[J]. Energy & Fuels, 2006, 20(5): 1886–1894. doi: 10.1021/ef060064g
    [44] GAN Y N, QIAO L. Combustion characteristics of fuel droplets with addition of nano and micron-sized aluminum particles[J]. Combustion and Flame, 2011, 158(2): 354–368. doi: 10.1016/j.combustflame.2010.09.005
    [45] SHARIATMADAR F S, PAKDEHI S G. Effect of various surfactants on the stability time of kerosene-boron nanofluids[J]. Micro & Nano Letters, 2016, 11(9): 498–502. doi: 10.1049/mnl.2016.0223
    [46] KANNAIYAN K, ANOOP K, SADR R. Effect of nanoparticles on the fuel properties and spray performance of aviation turbine fuel[J]. Journal of Energy Resources Technology, 2017, 139(3): 032201. doi: 10.1115/1.4034858
    [47] HE Y R, JIN Y, CHEN H S, et al. Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe[J]. International Journal of Heat and Mass Transfer, 2007, 50(11-12): 2272–2281. doi: 10.1016/j.ijheatmasstransfer.2006.10.024
    [48] NGUYEN C T, DESGRANGES F, ROY G, et al. Temperature and particle-size dependent viscosity data for water-based nanofluids-Hysteresis phenomenon[J]. International Journal of Heat and Fluid Flow, 2007, 28(6): 1492–1506. doi: 10.1016/j.ijheatfluidflow.2007.02.004
    [49] NGUYEN C T, DESGRANGES F, GALANIS N, et al. Viscosity data for Al2O3-water nanofluid-hysteresis: is heat transfer enhancement using nanofluids reliable?[J]. International Journal of Thermal Sciences, 2008, 47(2): 103–111. doi: 10.1016/j.ijthermalsci.2007.01.033
    [50] ALAWI O A, SIDIK N A C. Mathematical correlations on factors affecting the thermal conductivity and dynamic viscosity of nanorefrigerants[J]. International Communications in Heat and Mass Transfer, 2014, 58: 125–131. doi: 10.1016/j.icheatmasstransfer.2014.08.033
    [51] CHEVALIER J, TILLEMENT O, AYELA F. Rheological properties of nanofluids flowing through microchannels[J]. Applied Physics Letters, 2007, 91(23): 233103. doi: 10.1063/1.2821117
    [52] ESFE M H, SAEDODIN S, WONGWISES S, et al. An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids[J]. Journal of Thermal Analysis and Calorimetry, 2015, 119(3): 1817–1824. doi: 10.1007/s10973-014-4328-8
    [53] WANG J, HUANG X, QIAO X, et al. Experimental study on evaporation characteristics of single and multiple fuel droplets[J]. Journal of the Energy Institute, 2020, 93(4): 1473–1480. doi: 10.1016/j.joei.2020.01.009
    [54] SUH H K, LEE C S. Experimental and analytical study on the spray characteristics of dimethyl ether (DME) and diesel fuels within a common-rail injection system in a diesel engine[J]. Fuel, 2008, 87(6): .925–932. doi: 10.1016/j.fuel.2007.05.051
    [55] WANG J G, WANG X R, CHEN H, et al. Experimental study on puffing and evaporation characteristics of jatropha straight vegetable oil (SVO) droplets[J]. International Journal of Heat and Mass Transfer, 2018, 119: 392–399. doi: 10.1016/j.ijheatmasstransfer.2017.11.130
    [56] SUNDARARAJ A J, PILLAI B C, GUNA K R. Experimental investigation of effect of temperature on ignition behaviour of seeded refined kerosene[J]. Thermochimica Acta, 2020, 683: 178469. doi: 10.1016/j.tca.2019.178469
    [57] HAN W K, DAI B X, LIU J Z, et al. Ignition and combustion characteristics of heptane-based nanofluid fuel droplets[J]. Energy & Fuels, 2019, 33(10): 10282–10289. doi: 10.1021/acs.energyfuels.9b02347
    [58] TANVIR S, QIAO L. Droplet burning rate enhancement of ethanol with the addition of graphite nanoparticles: influence of radiation absorption[J]. Combustion and Flame, 2016, 166: 34–44. doi: 10.1016/j.combustflame.2015.12.021
    [59] MEHREGAN M, MOGHIMAN M. Effect of aluminum nanoparticles on combustion characteristics and pollutants emission of liquid fuels A numerical study[J]. Fuel, 2014, 119: 57–61. doi: 10.1016/j.fuel.2013.11.016
    [60] GHAMARI M, RATNER A. Combustion characteristics of colloidal droplets of jet fuel and carbon based nanoparticles[J]. Fuel, 2017, 188: 182–189. doi: 10.1016/j.fuel.2016.10.040
    [61] HOSEINI S S, NAJAFI G, GHOBADIAN B, et al. Performance and emission characteristics of a CI engine using graphene oxide (GO) nano-particles additives in biodiesel-diesel blends[J]. Renewable Energy, 2020, 145: 458–465. doi: 10.1016/j.renene.2019.06.006
    [62] RAMESH D K, DHANANJAYA KUMAR J L, HEMANTH KUMAR S G, et al. Study on effects of alumina nanoparticles as additive with poultry litter biodiesel on performance, combustion and emission characteristic of diesel engine[J]. Materials Today:Proceedings, 2018, 5(1): 1114–1120. doi: 10.1016/j.matpr.2017.11.190
    [63] SOUDAGAR M E M, NIK-GHAZALI N N, KALAM M A, et al. An investigation on the influence of aluminium oxide nano-additive and honge oil methyl ester on engine performance, combustion and emission characteristics[J]. Renewable Energy, 2020, 146: 2291–2307. doi: 10.1016/j.renene.2019.08.025
    [64] EL-SEESY A I, ABDEL-RAHMAN A K, BADY M, et al. Performance, combustion, and emission characteristics of a diesel engine fueled by biodiesel-diesel mixtures with multi-walled carbon nanotubes additives[J]. Energy Conversion and Management, 2017, 135: 373–393. doi: 10.1016/j.enconman.2016.12.090
    [65] JAVED S, SATYANARAYANA MURTHY Y V V, SATYANARAYANA M R S, et al. Effect of a zinc oxide nanoparticle fuel additive on the emission reduction of a hydrogen dual-fuelled engine with jatropha methyl ester biodiesel blends[J]. Journal of Cleaner Production, 2016, 137: 490–506. doi: 10.1016/j.jclepro.2016.07.125
    [66] CHENG Y X, ZHAO Y, ZHAO F Q, et al. ReaxFF simulations on the combustion of Al and n–butanol nanofluid[J]. Fuel, 2022, 330: 125465. doi: 10.1016/j.fuel.2022.125465
    [67] WEI J J, HE C J, LV G, et al. The combustion, performance and emissions investigation of a dual-fuel diesel engine using silicon dioxide nanoparticle additives to methanol[J]. Energy, 2021, 230: 120734. doi: 10.1016/j.energy.2021.120734
    [68] YAN Q L, GOZIN M, ZHAO F Q, et al. Highly energetic compositions based on functionalized carbon nanomaterials[J]. Nanoscale, 2016, 8(9): 4799–4851. doi: 10.1039/c5nr07855e
    [69] HE W, LIU P J, HE G Q, et al. Highly reactive metastable intermixed composites (MICs): preparation and characterization[J]. Advanced Materials, 2018, 30(41): 1706293. doi: 10.1002/adma.201706293
    [70] SUNDARAM D, YANG V, YETTER R A. Metal-based nanoenergetic materials: synthesis, properties, and applications[J]. Progress in Energy and Combustion Science, 2017, 61: 293–365. doi: 10.1016/j.pecs.2017.02.002
    [71] PATEL V K, SAURAV J R, GANGOPADHYAY K, et al. Combustion characterization and modeling of novel nanoenergetic composites of Co3O4/nAl[J]. RSC Advances, 2015, 5(28): 21471–21479. doi: 10.1039/C4RA14751K
    [72] YAN Q L, ZHAO F Q, KUO K K, et al. Catalytic effects of nano additives on decomposition and combustion of RDX-, HMX-, and AP-based energetic compositions[J]. Progress in Energy and Combustion Science, 2016, 57: 75–136. doi: 10.1016/j.pecs.2016.08.002
    [73] WANG L L, MUNIR Z A, MAXIMOV Y M. Thermite reactions: their utilization in the synthesis and processing of materials[J]. Journal of Materials Science, 1993, 28(14): 3693–3708. doi: 10.1007/BF00353167
    [74] FOLEY T, PACHECO A, MALCHI J, et al. Development of nanothermite composites with variable electrostatic discharge ignition thresholds[J]. Propellants, Explosives, Pyrotechnics, 2007, 32(6): 431–434. doi: 10.1002/prep.200700273
    [75] HE W, LIU P J, GONG F Y, et al. Tuning the reactivity of metastable intermixed composite n–Al/PTFE by polydopamine interfacial control[J]. ACS Applied Materials & Interfaces, 2018, 10(38): 32849–32858. doi: 10.1021/acsami.8b10197
    [76] HE W, TAO B W, YANG Z J, et al. Mussel-inspired polydopamine-directed crystal growth of core-shell n–Al@PDA@CuO metastable intermixed composites[J]. Chemical Engineering Journal, 2019, 369: 1093–1101. doi: 10.1016/j.cej.2019.03.165
    [77] AO W, GAO Y, ZHOU S, et al. Enhancing the stability and combustion of a nanofluid fuel with polydopamine-coated aluminum nanoparticles[J]. Chemical Engineering Journal, 2021, 418: 129527. doi: 10.1016/j.cej.2021.129527
    [78] GAO Y, AO W, LI L K B, et al. Catalyzed combustion of a nanofluid fuel droplet containing polydopamine-coated metastable intermixed composite n–Al/CuO[J]. Aerospace Science and Technology, 2021, 118: 107005. doi: 10.1016/j.ast.2021.107005
    [79] CHEN W Q, ZHU B Z, SUN Y L, et al. Nano-sized copper oxide enhancing the combustion of aluminum/kerosene-based nanofluid fuel droplets[J]. Combustion and Flame, 2022, 240: 112028. doi: 10.1016/j.combustflame.2022.112028
    [80] HE W, AO W, YANG G C, et al. Metastable energetic nanocomposites of MOF-activated aluminum featured with multi-level energy releases[J]. Chemical Engineering Journal, 2020, 381: 122623. doi: 10.1016/j.cej.2019.122623
    [81] PANDYA N S, SHAH H, MOLANA M, et al. Heat transfer enhancement with nanofluids in plate heat exchangers: a comprehensive review[J]. European Journal of Mechanics - B/Fluids, 2020, 81: 173–190. doi: 10.1016/j.euromechflu.2020.02.004
    [82] YANG D L, XIA Z X, HUANG L Y, et al. Synthesis of metallized kerosene gel and its characterization for propulsion applications[J]. Fuel, 2020, 262: 116684. doi: 10.1016/j.fuel.2019.116684
    [83] CHEN A Q, GUAN X D, LI X M, et al. Preparation and characterization of metalized JP–10 gel propellants with excellent thixotropic performance[J]. Propellants, Explosives, Pyrotechnics, 2017, 42(9): 1007–1013. doi: 10.1002/prep.201700161
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  75
  • HTML全文浏览量:  34
  • PDF下载量:  7
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-11-01
  • 修回日期:  2023-02-06
  • 录用日期:  2023-02-27
  • 网络出版日期:  2023-04-23

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日