Characteristics of car body pressure load of 600 km/h maglev trains crossing in tunnel
-
摘要: 随着列车速度的提升,空气动力学效应对车体压力载荷影响愈加严重,且列车隧道交会比单列车通过隧道时的空气动力学效应更加剧烈。为研究磁浮列车隧道交会时的车体压力载荷,采用一维可压缩非定常不等熵流动模型,在论证了研究方法正确性的基础上,分析了车体最大正负压值特征和车体压力最值(最大正负压值和最大压力峰峰值)分布特性,研究了隧道长度、列车速度和阻塞比对车体压力载荷的影响特性。研究结果表明:列车在通过隧道的过程中,车体所承受的最大负压值远大于最大正压值;只有当隧道长度超过一定值时,车体的最大正负压值出现在头尾车;头尾车的压力最值在隧道长度超过2 km以后保持定值,且不同速度下头尾车的最大正压值的定值基本重合,接近于“零”;隧道长度在一定范围内时,车体压力载荷与速度的二次方成正比;车体压力最值随阻塞比增大而增大。研究成果可为车体气动疲劳强度设计提供基础数据。Abstract: With the rapid increase of the train speed, aerodynamic effect has a more serious impact on the pressure load of the car body, and the trains crossing in the tunnel is more violent than that of a single train passing through the tunnel. In order to research the aerodynamic load of maglev train crossing in the tunnel, the one-dimensional unsteady compressible non-homentropic flow model method was adopted. The distribution characteristics of the maximum positive pressure, negative pressure and maximum pressure (maximum positive and negative pressure and maximum peak pressure) of the car body were analyzed and the influence characteristics of the tunnel length, speed and blocking ratio on the external pressure were researched. The results show that the maximum negative pressure value of the car body is much greater than the maximum positive pressure value during the train crossing in the tunnel; only when the tunnel length exceeds a certain value, would the maximum positive and negative pressure value of the car body appear in the head and tail train, respectively; the maximum pressure values of the head and tail cars remain constant after the tunnel length exceeds 2 km, and the maximum positive pressure values of the head and tail cars at different speeds basically coincide, which are close to “zero”; when the tunnel length is within a certain range, the maximum pressure is proportional to the square of the speed; and the maximum pressure increases linearly with the increase of the blocking ratio. The findings of this research can provide support for the car body aerodynamic fatigue strength design.
-
Key words:
- high speed maglev train /
- crossing in tunnel /
- pressure load /
- one-dimensional flow model
-
表 1 中南大学磁浮隧道列车数据
Table 1. Maglev tunnel data and train data of Central South University
隧道参数 列车参数 横截面积 140 m2 横截面积 11.9 m2 横截面周长 41.94 m 横截面周长 18.1 m 长度 318 m 长度 81 m 进口端局部阻力系数 0.5 车头压力损失系数 0 壁面沿程摩擦系数 0.005 车尾压力损失系数 0.00871 表 2 最不利隧道长度统计表
Table 2. Table of the most unfavorable tunnel lengths
速度/(km·h−1) 最不利隧道长度/m 头车 尾车 最大正压值 最大负压值 最大压力峰峰值 最大正压值 最大负压值 最大压力峰峰值 200 750 270 270 270 810 270 300 570 350 410 310 530 470 350 490 330 330 350 450 410 400 410 330 350 370 390 370 450 390 350 370 410 350 290 500 350 390 370 390 300 270 550 350 390 390 270 270 270 600 310 390 390 290 270 270 表 3 不同隧道长度下头尾车压力最值与列车速度的幂次n的取值
Table 3. The value of the power n of the maximum pressure of head and tail train and train speed under different tunnel lengths
压力幅值 隧道长度/m n R2 最大正压值 310 2.665 99.9% 410 2.541 99.9% 510 2.224 99.9% 570 2.097 99.8% 590 2.022 99.9% 610 1.888 99.8% 630 1.735 99.1% 最大负压值 310 2.544 99.2% 330 2.278 99.2% 350 2.133 99.3% 370 1.940 99.1% 390 1.737 98.8% 630 0.833 93.4% 表 4 头尾车压力最值与阻塞比的幂次n取值
Table 4. The value of the power n of maximum pressure of the head and tail train and blocking ratio
车厢 最大正压值 最大负压值 最大压力峰峰值 n R2 n R2 n R2 头车 1.14 99.8% 1.23 99.8% 1.21 99.8% 尾车 0.05 100% 0.99 99.6% 0.92 99.6% -
[1] PETERS J L. Aerodynamics of very high speed trains and maglev vehicles: state of the art and future potential[J]. International Journal of Vehicle Design, 1983, 3: 308–341. [2] SCHETZ J A. Aerodynamics of high-speed trains[J]. Annual Review of Fluid Mechanics, 2001, 33: 371–414. doi: 10.1146/annurev.fluid.33.1.371 [3] NIU J Q, SUI Y, YU Q J, et al. Aerodynamics of railway train/tunnel system: a review of recent research[J]. Energy and Built Environment, 2020, 1(4): 351–375. doi: 10.1016/j.enbenv.2020.03.003 [4] TIELKES T. Aerodynamic aspects of maglev systems[C]// Proc of the 19th international conference on magnetically levitated systems and linear drives. 2006. [5] 寺本紀彬, 佐々木, 英夫植田, et al. 山梨リニア実験線のトネルン建設[J]. トンネル·地下, 1992, 12(4): 15–27. [6] YAMAMOTO K, KOZUMA Y, TAGAWA N, et al. Improving maglev vehicle characteristics for the yamanashi test line[J]. Quarterly Report of RTRI, 2004, 45(1): 7–12. doi: 10.2219/rtriqr.45.7 [7] 菅沢正浩, 保坂史郎, 岩本孝昌, et al. 山梨リニア実験線新型車両の走行試験結果概要[C]//鉄道技術連合シンポジウム(j-rail)講演論文集. 2003: 305-308. [8] 山崎, 幹男, 若原, et al. 超高速鉄道トンネル内に生じる圧力変動評価[C]//土木学会論文集. 2003: 171-189. [9] 杉本直, 川崎卓巳, 神岡光浩. 超高速に挑む-山梨実験線リニア車両[J]. 川崎重工技報, 2006(160): 8–15. [10] SAITO S, IIDA M, KAJIYAMA H. Numerical simulation of 1-D unsteady compressible flow in railway tunnels[J]. Jour-nal of Environment and Engineering, 2011, 6(4): 723–738. doi: 10.1299/jee.6.723 [11] HUANG S, LI Z W, YANG M Z. Aerodynamics of high-speed maglev trains passing each other in open air[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2019, 188: 151–160. doi: 10.1016/j.jweia.2019.02.025 [12] 梅元贵, 周朝晖, 许建林. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009.MEI Y G, ZHOU C H, XU J L. Aerodynamics of high-speed railway tunnel[M]. Beijing: Science Press, 2009. [13] MEI Y G. A generalized numerical simulation method for pressure waves generated by high-speed trains passing through tunnels[J]. Advances in Structural Engineering, 2013, 16(8): 1427–1436. doi: 10.1260/1369-4332.16.8.1427 [14] 梅元贵, 赵汗冰, 陈大伟, 等. 时速600 km磁浮列车驶入隧道时初始压缩波特征的数值模拟[J]. 交通运输工程学报, 2020, 20(1): 120–131.MEI Y G, ZHAO H B, CHEN D W, et al. Numerical simulation of initial compression wave characteristics of 600 km·h-1 maglev train entering tunnel[J]. Journal of Traffic and Transportation Engineering, 2020, 20(1): 120–131. [15] 梅元贵, 张志超, 杜健, 等. 高速磁浮单列车通过隧道时车外压力数值模拟研究[J]. 中国铁道科学, 2021, 42(6): 78–89. doi: 10.3969/j.issn.1001-4632.2021.06.09MEI Y G, ZHANG Z C, DU J, et al. Numerical simulation of external pressure caused by high-speed maglev single train passing tunnel[J]. China Railway Science, 2021, 42(6): 78–89. doi: 10.3969/j.issn.1001-4632.2021.06.09 [16] 毕海权, 雷波, 张卫华. TR磁浮列车湍流外流场数值计算[J]. 西南交通大学学报, 2005, 40(1): 5–8. doi: 10.3969/j.issn.0258-2724.2005.01.002BI H Q, LEI B, ZHANG W H. Numerical calculation for turbulent flow around TR maglev train[J]. Journal of Southwest Jiaotong University, 2005, 40(1): 5–8. doi: 10.3969/j.issn.0258-2724.2005.01.002 [17] 梁习锋, 沈娴雅. 环境风与列车交会耦合作用下磁浮列车横向气动性能[J]. 中南大学学报(自然科学版), 2007, 38(4): 751–757.LIANG X F, SHEN X Y. Lateral aerodynamic performances of maglev train when two trains meet with wind blowing[J]. Journal of Central South University (Science and Tech-nology), 2007, 38(4): 751–757. [18] 焦齐柱, 肖明清, 周俊超, 等. 基于乘员耳感舒适性的时速600 km磁悬浮单线隧道最优净空面积研究[J]. 铁道科学与工程学报, 2020, 17(12): 2993–3002.JIAO Q Z, XIAO M Q, ZHOU J C, et al. Study on the optimal clearance area of a single line maglev tunnel with a speed of 600 km/h based on the ear comfort of passengers[J]. Journal of Railway Science and Engineering, 2020, 17(12): 2993–3002. [19] 张志超, 杜健, 赵汗冰, 等. 高速磁浮单线隧道车体压力载荷特征[J]. 铁道科学与工程学报, 2021, 18(1): 21–30. doi: 10.19713/j.cnki.43-1423/u.t20200201ZHANG Z C, DU J, ZHAO H B, et al. Pressure load characteristics of high-speed maglev single-track tunnels[J]. Journal of Railway Science and Engineering, 2021, 18(1): 21–30. doi: 10.19713/j.cnki.43-1423/u.t20200201 [20] 黄莎, 李志伟, 杨明智, 等. 高速磁浮列车通过隧道群时的压力波特性[J]. 中南大学学报(自然科学版), 2022, 53(5): 1770–1781.HUANG S, LI Z W, YANG M Z, et al. Pressure wave characteristics of high-speed maglev train passing through tunnel groups[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1770–1781. [21] 张洁, 王雨舸, 韩帅, 等. 缓冲结构长度对600 km/h磁浮列车通过隧道时的压力波特性影响分析[J]. 中南大学学报(自然科学版), 2022, 53(5): 1668–1678.ZHANG J, WANG Y G, HAN S, et al. Influence of hood length on pressure wave characteristics induced by 600 km/h maglev train passing through tunnel[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1668–1678. [22] 李颢豪, 杨明智, 孔学舟. 不同高度声屏障对磁浮列车气动效应影响研究[J]. 铁道科学与工程学报, 2017, 14(4): 819–826. doi: 10.3969/j.issn.1672-7029.2017.04.021LI H H, YANG M Z, KONG X Z. Influence of the height of sound barrier on aerodynamic effects of maglev train[J]. Journal of Railway Science and Engineering, 2017, 14(4): 819–826. doi: 10.3969/j.issn.1672-7029.2017.04.021 [23] 周细赛, 刘堂红, 陈争卫, 等. 头部主型线变化对列车隧道交会气动性能的影响[J]. 中南大学学报(自然科学版), 2018, 49(2): 493–501.ZHOU X S, LIU T H, CHEN Z W, et al. Influence of head outlines on aerodynamic effect of two trains intersecting in tunnel[J]. Journal of Central South University (Science and Technology), 2018, 49(2): 493–501. [24] 王磊, 骆建军, 李飞龙. 高速列车过双线隧道气动效应及列车风特性[J]. 哈尔滨工业大学学报, 2021, 53(9): 43–52. doi: 10.11918/202011011WANG L, LUO J J, LI F L. Aerodynamic effects and train wind characteristics of high-speed train passing through double-track tunnel[J]. Journal of Harbin Institute of Technology, 2021, 53(9): 43–52. doi: 10.11918/202011011 [25] YANG M Z, ZHONG S, ZHANG L, et al. 600 km/h moving model rig for high-speed train aerodynamics[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2022, 227: 105063. doi: 10.1016/j.jweia.2022.105063 [26] 张雷, 林晓龙, 尹小放, 等. 线间距对400 km/h高速列车隧道交会气动性能的影响[J]. 高速铁路技术, 2021, 12(2): 43–49. doi: 10.12098/j.issn.1674-8247.2021.02.008ZHANG L, LIN X L, YIN X F, et al. Influence of distance between centers of tracks on the aerodynamic performance of 400 km/h high-speed trains meeting in tunnels[J]. High Speed Railway Technology, 2021, 12(2): 43–49. doi: 10.12098/j.issn.1674-8247.2021.02.008 [27] 李艳, 魏德豪, 秦登, 等. 时速400 km+高速列车交会压力波特性研究[J]. 铁道工程学报, 2021, 38(8): 25–29,35. doi: 10.3969/j.issn.1006-2106.2021.08.006LI Y, WEI D H, QIN D, et al. Research on the pressure wave characteristics of high-speed trains passing each other at speeds of 400 km/h and above[J]. Journal of Railway Engineering Society, 2021, 38(8): 25–29,35. doi: 10.3969/j.issn.1006-2106.2021.08.006 [28] 王志钧, 李艳, 魏康, 等. 400 km/h动车组车体压力载荷隧道参数影响特征研究[J]. 高速铁路技术, 2021, 12(5): 46–51,67.WANG Z J, LI Y, WEI K, et al. Study on influence of tunnel parameters on pressure load of carbody of 400 km/h EMU[J]. High Speed Railway Technology, 2021, 12(5): 46–51,67. [29] 陆意斌, 王田天, 张雷, 等. 时速400 km不同编组列车通过隧道时的气动载荷[J]. 中南大学学报(自然科学版), 2022, 53(5): 1855–1866.LU Y B, WANG T T, ZHANG L, et al. Aerodynamic loads of trains with different formations passing through and intersecting in tunnels at 400 km/h[J]. Journal of Central South University (Science and Technology), 2022, 53(5): 1855–1866. [30] 国家铁路局. 磁浮铁路技术标准: TB 10630—2019[S]. 北京: 中国铁道出版社, 2019. -