Study on the influence of atmospheric environment change on the temperature field of vacuum tube
-
摘要: 真空管道内的温度分布直接影响管道内磁浮列车的气动性能及运行安全,研究大气环境对真空管道温度场的影响,对未来真空管道列车运输系统的建设具有重要意义。基于四川省成都市近5年(2017—2021)的气象数据,总结了各季节的太阳辐射强度、空气湿度、大气温度和风速等大气环境参数,建立了真空管道辐射传热数值计算方法,采用DO(Discrete Ordinate)辐射模型研究了太阳辐射对真空管道内气流温度的影响,得到了不同季节、不同真空度下管道内气流温度分布及变化规律。研究表明:在太阳辐射的影响下,真空管道内气流温度提升较大;在相同真空度下,管道内气流温度夏季最高、冬季最低;随着真空度逐渐降低,管道内气流温度逐渐升高,真空度为0.1 atm(约10.1 kPa)时,夏季管道内气流温度最大提升56.60 K。Abstract: The temperature distribution in the vacuum tube directly affects the aerodynamic performance and operation safety of the maglev train. It is of great significance to study the influence of the atmospheric environment effect for the construction of the vacuum tube train transportation system in the future. The parameters of the atmospheric environment such as the solar radiation intensity, air humidity, temperature and wind speed in each season are obtained by collecting meteorological data of Chengdu in recent five years. The numerical calculation method of the radiation heat transfer from the vacuum tube is established. The DO (Discrete Ordinate) radiation model was used to study the influence of solar radiation on the air flow in the vacuum tube, and the temperature distribution and variation rule of the air flow in the tube under conditions of different seasons and different vacuum degrees were obtained. The results show that the air in the tube has a stable temperature rise under the influence of solar radiation. With the same vacuum degree, the temperature in the vacuum tube is the highest in summer and the lowest in winter. With the gradual decrease of the vacuum degree, the temperature of the air flow in the tube increases gradually in each season. When the vacuum degree is 0.1 atm (~10.1 kPa), the air temperature in the vacuum tube increases by 56.60 K in summer.
-
Key words:
- vacuum tube /
- radiation /
- natural convection /
- atmospheric environment /
- computa-tional fluid dynamics
-
表 1 成都市各月份气象数据表
Table 1. The table of Chengdu monthly aerodynamic data
季度 月份/月 温度/(°) 湿度/% 平均风速/(km·h−1) 春 3 13.0 0 9.3 4 18.0 4 9.5 5 22.0 24 9.4 夏 6 25.0 75 8.6 7 26.0 95 7.9 8 26.5 90 7.6 秋 9 22.0 50 7.5 10 18.0 8 7.6 11 13.0 0 7.7 冬 12 8.0 0 7.6 1 6.0 0 7.8 2 8.5 0 8.6 表 2 成都市四季大气环境变量参数表
Table 2. Table of meteorological data of Chengdu in different seasons
季节 平均温度/(°) 平均湿度/% 平均风速/(km·h−1) 春 17.7 9.3 9.4 夏 25.8 86.7 8.0 秋 17.7 19.3 7.6 冬 7.5 0 8.0 表 3 各季节管道外壁面换热系数
Table 3. Thermal convection coefficient of pipeline wall in different seasons
季节 换热系数/(W·m−2·K−1) 春 4.54 夏 3.98 秋 3.81 冬 3.98 -
[1] 倪章松, 张军, 符澄, 等. 磁浮飞行风洞试验技术及应用需求分析[J]. 空气动力学学报, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206NI Z S, ZHANG J, FU C, et al. Analyses of the test techniques and applications of maglev flight tunnels[J]. Acta Aerodynamica Sinica, 2021, 39(5): 95–110. doi: 10.7638/kqdlxxb-2021.0206 [2] 央视网. 中国新闻: 世界首个电磁橇设施成功运行[Z]. (2022-10-20)[2022-11-01]. https://tv.cctv.com/2022/10/20/VIDEL8dSWULplgfwyAclj1HT221020.shtml. [3] 汤友富. 超级高铁发展趋势及关键问题分析[J]. 铁道建筑技术, 2019(4): 1–4. doi: 10.3969/j.issn.1009-4539.2019.04.001TANG Y F. Research on the development trend and analysis of key problems of hyperloop[J]. Railway Construc-tion Technology, 2019(4): 1–4. doi: 10.3969/j.issn.1009-4539.2019.04.001 [4] 金茂菁, 黄玲. 超高速真空管道交通技术发展现状与趋势[J]. 科技中国, 2018(3): 13–15. doi: 10.3969/j.issn.1673-5129.2018.03.004JIN M J, HUANG L. Development status and trend of ultra-high speed vacuum pipeline transportation technology[J]. China Scitechnology Business, 2018(3): 13–15. doi: 10.3969/j.issn.1673-5129.2018.03.004 [5] 黄尊地, 梁习锋, 常宁. 真空管道交通列车气动阻力数值分析[J]. 机械工程学报, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165HUANG Z D, LIANG X F, CHANG N. Numerical analysis of train aerodynamic drag of vacuum tube traffic[J]. Journal of Mechanical Engineering, 2019, 55(8): 165–172. doi: 10.3901/JME.2019.08.165 [6] 张克锐, 李庆领, 王传伟, 等. 真空管道高速列车气动噪声研究[J]. 真空科学与技术学报, 2019, 39(11): 950–957. doi: 10.13922/j.cnki.cjovst.2019.11.03ZHANG K R, LI Q L, WANG C W, et al. Aerodynamic noises of vacuum tube transportation: asimulation and theoretical study[J]. Chinese Journal of Vacuum Science and Technology, 2019, 39(11): 950–957. doi: 10.13922/j.cnki.cjovst.2019.11.03 [7] 刘加利, 张继业, 张卫华. 真空管道高速列车气动噪声源特性分析[J]. 真空科学与技术学报, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14LIU J L, ZHANG J Y, ZHANG W H. Simulation of noise source for high speed train in evacuated tube[J]. Chinese Journal of Vacuum Science and Technology, 2013, 33(10): 1026–1031. doi: 10.3969/j.issn.1672-7126.2013.10.14 [8] 邓自刚, 张勇, 王博, 等. 真空管道运输系统发展现状及展望[J]. 西南交通大学学报, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204DENG Z G, ZHANG Y, WANG B, et al. Present situation and prospect of evacuated tube transportation system[J]. Journal of Southwest Jiaotong University, 2019, 54(5): 1063–1072. doi: 10.3969/j.issn.0258-2724.20180204 [9] 中国空气动力研究与发展中心. 磁浮飞行风洞建设项目建议书[R]. 2019. [10] 沈通, 马志文, 杜晓洁, 等. 世界高速磁悬浮铁路发展现状与趋势分析[J]. 中国铁路, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094SHEN T, MA Z W, DU X J, et al. Development status and trend analysis of high speed maglev railways worldwide[J]. China Railway, 2020(11): 94–99. doi: 10.19549/j.issn.1001-683x.2020.11.094 [11] 熊嘉阳, 邓自刚. 高速磁悬浮轨道交通研究进展[J]. 交通运输工程学报, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008XIONG J Y, DENG Z G. Research progress of high-speed maglev rail transit[J]. Journal of Traffic and Transportation Engineering, 2021, 21(1): 177–198. doi: 10.19818/j.cnki.1671-1637.2021.01.008 [12] NØLAND J K. Prospects and challenges of the hyperloop transportation system: a systematic technology review[J]. IEEE Access, 2021, 9: 28439–28458. doi: 10.1109/ACCESS.2021.3057788 [13] 周鹏, 李田, 张继业, 等. 真空管道超级列车激波簇结构研究[J]. 机械工程学报, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086ZHOU P, LI T, ZHANG J Y, et al. Research on shock wave trains generated by the hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(2): 86–97. doi: 10.3901/JME.2020.02.086 [14] 周鹏, 李田, 张继业, 等. 真空管道超级列车气动热效应[J]. 机械工程学报, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190ZHOU P, LI T, ZHANG J Y, et al. Aerothermal effect generated by hyper train in the evacuated tube[J]. Journal of Mechanical Engineering, 2020, 56(8): 190–199. doi: 10.3901/JME.2020.08.190 [15] BAO S J, HU X, WANG J K, et al. Numerical study on the influence of initial ambient temperature on the aerodynamic heating in the tube train system[J]. Advances in Aerodyna-mics, 2020, 2(1): 1–18. doi: 10.1186/s42774-020-00053-8 [16] 张俊博, 李红梅, 王俊彪, 等. 低真空管道磁悬浮列车温度场数值计算[J]. 真空科学与技术学报, 2021, 41(5): 448–455. doi: 10.13922/j.cnki.cjvst.202010007ZHANG J B, LI H M, WANG J B, et al. Numerical analysis of the temperature field of vacuum tube maglev train[J]. Chinese Journal of Vacuum Science and Technology, 2021, 41(5): 448–455. doi: 10.13922/j.cnki.cjvst.202010007 [17] 陈大伟, 郭迪龙. 低真空管道磁浮列车气动特性[J]. 力学研究, 2019, 8(2): 109–117. doi: 10.12677/IJM.2019.82013CHEN D W, GUO D L. Aerodynamic characteristics of maglev train on low vacuum tube[J]. International Journal of Mechanical Research, 2019, 8(2): 109–117. doi: 10.12677/IJM.2019.82013 [18] 魏龙涛, 胡站伟, 杨升科, 等. 真空管道列车悬浮电磁铁散热性能研究[J]. 装备环境工程, 2022, 19(6): 141–146. doi: 10.7643/issn.1672-9242.2022.06.020WEI L T, HU Z W, YANG S K, et al. Heat dissipation performance of suspension electromagnet in the evacuated tube[J]. Equipment Environmental Engineering, 2022, 19(6): 141–146. doi: 10.7643/issn.1672-9242.2022.06.020 [19] ZHOU Z W, XIA C, DU X Z, et al. Impact of the isentropic and Kantrowitz limits on the aerodynamics of an evacuated tube transportation system[J]. Physics of Fluids, 2022, 34(6): 066103. doi: 10.1063/5.0090971 [20] YU Q J, YANG X F, NIU J Q, et al. Aerodynamic thermal environment around transonic tube train in choked/unchoked flow[J]. International Journal of Heat and Fluid Flow, 2021, 92: 108890. doi: 10.1016/j.ijheatfluidflow.2021.108890 [21] YU Q J, YANG X F, NIU J Q, et al. Theoretical and numerical study of choking mechanism of fluid flow in Hyperloop system[J]. Aerospace Science and Technology, 2022, 121: 107367. doi: 10.1016/j.ast.2022.107367 [22] HU X, DENG Z G, ZHANG W H. Effect of cross passage on aerodynamic characteristics of super-high-speed evacuated tube transportation[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2021, 211: 104562. doi: 10.1016/j.jweia.2021.104562 [23] HU X, DENG Z G, ZHANG J W, et al. Effect of tracks on the flow and heat transfer of supersonic evacuated tube maglev transportation[J]. Journal of Fluids and Structures, 2021, 107: 103413. doi: 10.1016/j.jfluidstructs.2021.103413 [24] HU X, DENG Z G, ZHANG J W, et al. Aerodynamic behaviors in supersonic evacuated tube transportation with different train nose lengths[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122130. doi: 10.1016/j.ijheatmasstransfer.2021.122130 [25] 胡啸, 邓自刚, 张银龙, 等. 真空管道磁浮交通管内波系时空分布特征[J]. 空气动力学学报, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242HU X, DENG Z G, ZHANG Y L, et al. Characteristics of spatial and temporal distribution of wave system in evacuated tube maglev transportation[J]. Acta Aerodyna-mica Sinica, 2022, 40(6): 146–154. doi: 10.7638/kqdlxxb-2021.0242 [26] SHEN C. Rarefied gas dynamics: fundamentals, simulations and micro flows[M]. Berlin and Heidelberg: Springer-Verlag, 2005. doi: 10.1007/b138784 [27] SWINBANK W C. Long-wave radiation from clear skies[J]. Quarterly Journal of the Royal Meteorological Society, 1963, 89(381): 339–348. doi: 10.1002/qj.49708938105 [28] POLYAKOV A F. Development of secondary free-convection currents in forced turbulent flow in horizontal tubes[J]. Journal of Applied Mechanics and Technical Physics, 1974, 15(5): 632–637. doi: 10.1007/BF00851521 [29] PETUKHOV B S, POLYAKOV A F, LAUNDER B E. Heat transfer in turbulent mixed convection[M]. New York: Hemisphere Publishing Corporation, 1988. doi: 10.1137/1032068 -