留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温和湿度对超疏水表面水滴接触角的影响

邱岳 杨一帆 于大川 朱春玲

邱岳, 杨一帆, 于大川, 等. 低温和湿度对超疏水表面水滴接触角的影响[J]. 实验流体力学, doi: 10.11729/syltlx20220085
引用本文: 邱岳, 杨一帆, 于大川, 等. 低温和湿度对超疏水表面水滴接触角的影响[J]. 实验流体力学, doi: 10.11729/syltlx20220085
QIU Y, YANG Y F, YU D C, et al. Effects of Low Temperature and Humidity on Contact Angles of Water Droplets on Superhydrophobic Surfaces[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220085
Citation: QIU Y, YANG Y F, YU D C, et al. Effects of Low Temperature and Humidity on Contact Angles of Water Droplets on Superhydrophobic Surfaces[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220085

低温和湿度对超疏水表面水滴接触角的影响

doi: 10.11729/syltlx20220085
基金项目: 国家自然科学基金(11832012);
详细信息
    作者简介:

    邱岳:(1995—),男,河南濮阳人,博士研究生。研究方向:飞行器环境控制。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学航空学院(210001)。Email:344166739@qq.com

    通讯作者:

    E-mail:clzhu@nuaa.edu.cn.

  • 中图分类号: TB383

Effects of Low Temperature and Humidity on Contact Angles of Water Droplets on Superhydrophobic Surfaces

  • 摘要: 超疏水表面的Cassie-Wenzel(C-W)润湿转变已经得到了广泛研究,然而对于覆膜成形的不规则表面来说,环境湿度对润湿转变的影响缺乏足够的探索。通过地面冷环境试验对不同温度、不同湿度诱导水滴静态接触角变化进行研究。结果表明:低温诱导水滴接触角降低,同时使表面发生冷凝现象,温度稳定后湿度成为了影响接触角变化的主要因素;温度可影响水滴冻结延迟时间,进而影响冻结前的接触角。通过水滴的低温和冻结试验可以定量得到温度和湿度对水滴接触角的影响,温度每降低5 ℃,接触角降低5° ± 1.7°;温度稳定后,水滴在相对湿度为88%时接触角每分钟降低2.4° ± 0.7°,在相对湿度为45%时接触角每分钟降低0.9° ± 0.2°。
  • 图  1  超疏水涂层制备流程示意图

    Figure  1.  Schematic diagram of preparation process of superhydrophobic coating

    图  2  显微镜拍摄超疏水涂层表面形貌

    Figure  2.  Microscope photographing of surface morphology of superhydrophobic coatings

    图  3  显微镜拍摄超疏水涂层表面3D形貌

    Figure  3.  3D topography of superhydrophobic coating surface captured by microscope

    图  4  试验装置示意图

    Figure  4.  Schematic diagram of test device

    图  5  低温冷凝对水滴接触角影响

    Figure  5.  Effect of low temperature condensation on the contact angle of water droplets

    图  6  不同环境湿度下接触角变化

    Figure  6.  Variation of contact angle under different ambient humidity

    图  7  不同环境湿度下接触角降低速率

    Figure  7.  Contact angle reduction rate under different ambient humidity

    图  8  不同基板温度下水滴接触角和温度的关系

    Figure  8.  Relationship between water droplet contact angle and temperature when the substrate temperature is different

    图  9  水滴降温至冻结过程中水滴接触角及温度变化

    Figure  9.  Contact Angle and temperature change of water droplet during cooling to freezing

  • [1] 郑海坤, 常士楠, 赵媛媛. 超疏水/超润滑表面的防疏冰机理及其应用[J]. 化学进展, 2017, 29(1): 102–118. doi: 10.7536/PC161015

    ZHENG H K, CHANG S N, ZHAO Y Y. Anti-icing mechanism and application of super-hydrophobic/super-lubricated surfaces[J]. Progress in Chemistry, 2017, 29(1): 102–118. doi: 10.7536/PC161015
    [2] TSAI P, LAMMERTINK R G H, WESSLING M, et al. Evaporation-triggered wetting transition for water droplets upon hydrophobic microstructures[J]. Physical Review Letters, 2010, 104(11): 116102. doi: 10.1103/PhysRevLett.104.116102
    [3] HOODA A, GOYAT M S, PANDEY J K, et al. A review on fundamentals, constraints and fabrication techniques of superhydrophobic coatings[J]. Progress in Organic Coatings, 2020, 142: 105557. doi: 10.1016/j.porgcoat.2020.105557
    [4] XU Y Q. Theoretical research of wetting transition from cassie state to Wenzel state[C]//Proc of the 2020 7th International Forum on Electrical Engineering and Automation (IFEEA). 2020. .
    [5] CHU F Q, WU X M, WANG L L. Meltwater evolution during defrosting on superhydrophobic surfaces[J]. ACS Applied Materials & Interfaces, 2018, 10(1): 1415–1421. doi: 10.1021/acsami.7b16087
    [6] CHEN R, JIAO L, ZHU X, et al. Cassie-to-Wenzel transition of droplet on the superhydrophobic surface caused by light induced evaporation[J]. Applied Thermal Engineering, 2018, 144: 945–959. doi: 10.1016/j.applthermaleng.2018.09.011
    [7] HE X, ZHANG B X, WANG S L, et al. The Cassie-to-Wenzel wetting transition of water films on textured surfaces with different topologies[J]. Physics of Fluids, 2021, 33(11): 112006. doi: 10.1063/5.0066106
    [8] TAVAKOLI F, KAVEHPOUR H P. Cold-induced spreading of water drops on hydrophobic surfaces[J]. Langmuir, 2015, 31(7): 2120–2126. doi: 10.1021/la503620a
    [9] WANG L Z, TIAN Z, JIANG G C, et al. Spontaneous dewetting transitions of droplets during icing & melting cycle[J]. Nature Communications, 2022, 13: 378. doi: 10.1038/s41467-022-28036-x
    [10] LONG Y, QIANG X, JIAN X, et al. In situ investigation of ice formation on surfaces with representative wettability[J]. Applied Surface Science, 2010, 256(22): 6764–6769. doi: 10.1016/j.apsusc.2010.04.086
    [11] SHEN Y Z, XIE X Y, TAO J, et al. Mechanical equilibrium dynamics controlling wetting state transition at low-temperature superhydrophobic array-microstructure surfaces[J]. Coatings, 2021, 11(5): 522. doi: 10.3390/coatings11050522
    [12] SUN J, ZHU P G, YAN X T, et al. Robust liquid repellency by stepwise wetting resistance[J]. Applied Physics Reviews, 2021, 8(3): 031403. doi: 10.1063/5.0056377
    [13] HAN YEONG Y, STEELE A, LOTH E, et al. Temperature and humidity effects on superhydrophobicity of nanocomposite coatings[J]. Applied Physics Letters, 2012, 100(5): 053112. doi: 10.1063/1.3680567
    [14] ZHU T, CHENG Y, HUANG J, et al. A transparent superhydrophobic coating with mechanochemical robustness for anti-icing, photocatalysis and self-cleaning[J]. Chemical Engineering Journal, 2020, 399: 125746. doi: 10.1016/j.cej.2020.125746
    [15] MEULER A J, DAVID SMITH J, VARANASI K K, et al. Relationships between water wettability and ice adhesion[J]. ACS Applied Materials & Interfaces, 2010, 2(11): 3100–3110. doi: 10.1021/am1006035
    [16] DORRER C, RÜHE J. Condensation and wetting transitions on microstructured ultrahydrophobic surfaces[J]. Langmuir, 2007, 23(7): 3820–3824. doi: 10.1021/la063130f
    [17] FIHRI A, ABDULLATIF D, BIN SAAD H, et al. Decorated fibrous silica epoxy coating exhibiting anti-corrosion properties[J]. Progress in Organic Coatings, 2019, 127: 110–116. doi: 10.1016/j.porgcoat.2018.09.025
    [18] PENNA M O, SILVA A A, DO ROSÁRIO F F, et al. Organophilic nano-alumina for superhydrophobic epoxy coatings[J]. Materials Chemistry and Physics, 2020, 255: 123543. doi: 10.1016/j.matchemphys.2020.123543
    [19] HUHTAMÄKI T, TIAN X L, KORHONEN J T, et al. Surface-wetting characterization using contact-angle measurements[J]. Nature Protocols, 2018, 13(7): 1521–1538. doi: 10.1038/s41596-018-0003-z
    [20] YUAN Y H, LEE T R. Contact angle and wetting properties[M]//Surface Science Techniques. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013: 3-34. .
  • 加载中
图(9)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  21
  • PDF下载量:  2
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-30
  • 修回日期:  2022-12-28
  • 录用日期:  2023-02-02
  • 网络出版日期:  2024-01-08

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日