留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两级旋流器径向间距对贫油直喷分级燃烧室流场和雾化影响的实验研究

蔡延青 杨晓丽 王凯兴 刘富强 冷先银 王少林 刘存喜 穆勇 徐纲

蔡延青, 杨晓丽, 王凯兴, 等. 两级旋流器径向间距对贫油直喷分级燃烧室流场和雾化影响的实验研究[J]. 实验流体力学, 2023, 37(6): 15-24 doi: 10.11729/syltlx20220082
引用本文: 蔡延青, 杨晓丽, 王凯兴, 等. 两级旋流器径向间距对贫油直喷分级燃烧室流场和雾化影响的实验研究[J]. 实验流体力学, 2023, 37(6): 15-24 doi: 10.11729/syltlx20220082
CAI Y Q, YANG X L, WANG K X, et al. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24 doi: 10.11729/syltlx20220082
Citation: CAI Y Q, YANG X L, WANG K X, et al. Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(6): 15-24 doi: 10.11729/syltlx20220082

两级旋流器径向间距对贫油直喷分级燃烧室流场和雾化影响的实验研究

doi: 10.11729/syltlx20220082
基金项目: 国家科技重大专项(2017-Ⅲ-0002-0026,J2019-Ⅲ-0006-0049);国家自然科学基金项目(52276141)
详细信息
    作者简介:

    蔡延青:(1996—),男,江苏淮安人,硕士研究生。研究方向:分级燃烧室特性研究。通信地址:江苏省镇江市京口区学府路301号(212013)。E-mail:2212011001@stmail.ujs.edu.cn

    通讯作者:

    E-mail:liufuqiang@iet.cn

    lxy@ujs.edu.cn

  • 中图分类号: V231.2

Experimental study on the effect of two-stage radial spacing on flow field and atomization in LDI staged combustor

  • 摘要: 主燃级旋流器与预燃级旋流器之间的径向间距是贫油直喷分级燃烧室一个非常重要的结构参数。本文利用粒子图像测速、平面激光PMie散射和粒径测量技术对3种不同径向间距条件下的流场和雾化特性进行实验研究。结果表明:在常温常压下,随着主/预燃级径向间距的增大,中心回流区由前窄后宽向前后宽度相同转变,两级间回流区不断增大;预燃级燃油锥角受径向间距影响较小,在空气压降的影响下,主燃级直喷燃油射流由向主燃级区域偏转转为向预燃级区域偏转,主油路雾化效果变差。主/预燃级径向间距为20 mm时,主油路和副油路都能获得较好的雾化效果。
  • 图  1  LDI分级燃烧室头部结构

    Figure  1.  LDI staged combustor cyclone structure

    图  2  主预燃级径向间距结构示意

    Figure  2.  Sketch of the radial space of primary and pilot swirler

    图  3  实验系统图

    Figure  3.  Diagram of test system

    图  4  光学测试系统

    Figure  4.  Optical test system

    图  5  实验测试段

    Figure  5.  Experimental test sectiont

    图  6  PIV速度云图

    Figure  6.  PIV velocity cloud

    图  7  预燃级燃油雾化分布云图

    Figure  7.  Cloud image of pilot stage fuel distribution

    图  8  预燃级燃油喷雾锥角

    Figure  8.  Pilot stage fuel cone angle

    图  9  副油路燃油平均粒径分布

    Figure  9.  Auxiliary oil fuel particle size

    图  10  主燃级燃油雾化分布云图

    Figure  10.  Cloud diagram of main stage fuel distribution

    图  11  主油路破碎提取

    Figure  11.  Main oil fuel crushing extraction

    图  12  主油路燃油粒径分布

    Figure  12.  Main stage fuel particle size distribution

    表  1  主燃级和预燃级的结构参数

    Table  1.   Structural parameters of main stage and pilot stage

    参数名称数值
    主油路喷射角度15°
    主燃级旋流角度60°
    主燃级出口收敛角度50°
    主燃级出口喷嘴直径0.482 mm
    副油路喷射角度80°
    预燃级旋流角度32°
    预燃级出口收敛角度45°
    预燃级出口喷嘴直径0.320 mm
    下载: 导出CSV

    表  2  常温常压实验工况

    Table  2.   Experimental conditions at normal temperature and pressure

    参数单独副油路单独主油路
    火焰筒进口总温t/K300300
    火焰筒进口总压p0/Pa101325101325
    压力损失/%3.30%3.30%
    压降/Pa3343.73343.7
    空气流量$ {\mathit{m}}_{\rm{air}} $/(kg·h−1)273.6273.6
    副油路燃油流量mf/(kg·h−1)10.80
    主油路燃油流量mz/(kg·h−1)032.4
    燃烧室入口轴向速度vx,0/(m·s−1)3030
    下载: 导出CSV

    表  3  不同主/预燃级径向间距下的预燃级燃油喷雾锥角 (∆p = 3.3%)

    Table  3.   Pilot stage fuel cone angle of different cyclone structures (∆p = 3.3%)

    主预燃级径向间距/mm角度/(°)
    未通气70.3
    2359.5
    2059.8
    2560.4
    下载: 导出CSV
  • [1] LEFEBVRE A H, BALLAL D R. Gas turbine combustion: alternative fuels and emissions[M]. 3rd ed. Boca Raton: Taylor & Francis, 2010. doi: 10.1201/9781420086058
    [2] ANACLETO P, HEITOR M V, MOREIRA A N. The mean and turbulent flowfields in a model RQL gas-turbine combustor[J]. Experiments in Fluids, 1996, 22(2): 153–164. doi: 10.1007/s003480050033
    [3] SCHWEITZER J K, ANDERSON J S, SCHEUGENPFLUG H, et al. Validation of propulsion technologies and new engine concepts in a joint technology demonstrator program[R]. Paper ICAS 2006-8.10.1, 2005.
    [4] MCKINNEY R, CHEUNG A, SOWA W, et al. The Pratt & Whitney TALON X low emissions combustor: revolutionary results with evolutionary technology[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 386. doi: 10.2514/6.2007-386
    [5] MONGIA H. Engineering aspects of complex gas turbine combustion mixers part Ⅳ: swirl cup[C]//Proc of the 9th Annual International Energy Conversion Engineering Conference. 2011: 5526. doi: 10.2514/6.2011-5526
    [6] YANG Z, BREISACHER K, OYEDIRAN A. Combustion-acoustic instability analysis of LPP combustor. Ⅱ- Longitudinal modes[C]//Proc of the 38th Aerospace Sciences Meeting and Exhibit. 2000: 713. doi: 10.2514/6.2000-713
    [7] GUIN C. Characterisation of autoignition and flashback in premixed injection systems[C]//RTO Meeting proceedings. 1999.
    [8] DHANUKA S K, TEMME J E, DRISCOLL J F, et al. Vortex-shedding and mixing layer effects on periodic flashback in a lean premixed prevaporized gas turbine combustor[J]. Proceedings of the Combustion Institute, 2009, 32(2): 2901–2908. doi: 10.1016/j.proci.2008.06.155
    [9] 金如山, 索建秦. 先进燃气轮机燃烧室[M]. 北京: 航空工业出版社, 2016.
    [10] CORREA S M. A review of NOx Formation under gas-turbine combustion conditions[J]. Combustion Science and Technology, 1993, 87(1-6): 329–362. doi: 10.1080/00102209208947221
    [11] FU Y. Aerodynamics and combustion of axial swirlers[D]. Cincinnati: University of Cincinnati, 2008.
    [12] TACINA R. Combustor technology for future aircraft[C]//Proc of the 26th Joint Propulsion Conference. 1990: 2400. doi: 10.2514/6.1990-2400
    [13] LAZIK W, DOERR T, BAKE S, et al. Development of lean-burn low-NOx combustion technology at rolls-Royce Deutschland[C]//Proceedings of ASME Turbo Expo 2008: Power for Land, Sea, and Air. 2009: 797−807. doi: 10.1115/GT2008-51115
    [14] 王于蓝, 范雄杰, 高伟, 等. 航空发动机燃烧室光学可视模型试验件及其流场测量研究进展[J]. 实验流体力学, 2021, 35(1): 18–33. doi: 10.11729/syltlx20190171

    WANG Y L, FAN X J, GAO W, et al. Development of optically accessible gas turbine model combustor and its flow field testing[J]. Journal of Experiments in Fluid Mechanics, 2021, 35(1): 18–33. doi: 10.11729/syltlx20190171
    [15] HEATH C M. Characterization of swirl-venturi lean direct injection designs for aviation gas turbine combustion[J]. Journal of Propulsion and Power, 2014, 30(5): 1334–1356. doi: 10.2514/1.B35077
    [16] KıRTAS M, PATEL N, SANKARAN V, et al. Large-eddy simulation of a swirl-stabilized, lean direct injection spray combustor[C]//Proceedings of ASME Turbo Expo 2006: Power for Land, Sea, and Air. 2008: 903-914. doi: 10.1115/GT2006-91310
    [17] PATEL N, KIRTAŞ M, SANKARAN V, et al. Simulation of spray combustion in a lean-direct injection combustor[J]. Proceedings of the Combustion Institute, 2007, 31(2): 2327–2334. doi: 10.1016/j.proci.2006.07.232
    [18] FU Y Q, JENG S M, TACINA R. Characteristics of the swirling flow in a multipoint LDI combustor[C]//Proc of the 45th AIAA Aerospace Sciences Meeting and Exhibit. 2007: 846. doi: 10.2514/6.2007-846
    [19] 李乐, 索建秦, 于涵, 等. 中心分级多点直喷燃烧室冷态流动特性研究[J]. 推进技术, 2021, 42(6): 1339–1350.

    LI L, SUO J Q, YU H, et al. Non-reaction flow characteristic of concentric staged multi-point direct injection combustor[J]. Journal of Propulsion Technology, 2021, 42(6): 1339–1350.
    [20] 于涵, 索建秦, 朱鹏飞, 等. 中心分级贫油直喷(LDI)燃烧室流动及污染排放特性研究[J]. 西北工业大学学报, 2018, 36(5): 816–823. doi: 10.3969/j.issn.1000-2758.2018.05.002

    YU H, SUO J Q, ZHU P F, et al. The characteristic of flow field and emissions of a concentric staged lean direct injection (LDI) combustor[J]. Journal of Northwestern Polytechnical University, 2018, 36(5): 816–823. doi: 10.3969/j.issn.1000-2758.2018.05.002
    [21] 曾青华, 孔文俊, 艾育华, 等. 旋流器结构对贫油直喷燃烧室的性能影响[J]. 航空动力学报, 2014, 29(8): 1775–1781. doi: 10.13224/j.cnki.jasp.2014.08.003

    ZENG Q H, KONG W J, AI Y H, et al. Effects of swirler structure on the performance of lean-direct-injection combustor[J]. Journal of Aerospace Power, 2014, 29(8): 1775–1781. doi: 10.13224/j.cnki.jasp.2014.08.003
    [22] 张群, 徐华胜, 钟华贵, 等. 多旋流器阵列贫油直喷燃烧室流场的数值模拟[J]. 航空动力学报, 2009, 24(3): 483–487. doi: 10.13224/j.cnki.jasp.2009.03.021

    ZHANG Q, XU H S, ZHONG H G, et al. Numerical simulation of flowfield in a multi-swirler array lean direct injection combustor[J]. Journal of Aerospace Power, 2009, 24(3): 483–487. doi: 10.13224/j.cnki.jasp.2009.03.021
    [23] 郑洪涛, 唐胜, 刘晓杰. 几何结构对贫油直喷燃烧室流场特性影响的研究[J]. 热科学与技术, 2017, 16(6): 497–502. doi: 10.13738/j.issn.1671-8097.2017.06.011

    ZHENG H T, TANG S, LIU X J. Effect of geometry on flow field characteristics of lean direct injection combustor[J]. Journal of Thermal Science and Technology, 2017, 16(6): 497–502. doi: 10.13738/j.issn.1671-8097.2017.06.011
    [24] 郑顺, 王成军, 里海洋, 等. 掺混孔位置对中心分级燃烧室性能影响的数值模拟[J]. 邵阳学院学报(自然科学版), 2021, 18(1): 51–59. doi: 10.3969/j.issn.1672-7010.2021.01.007

    ZHENG S, WANG C J, LI H Y, et al. Numerical simulation of effect of mixing hole location on performance of a central staged combustor[J]. Journal of Shaoyang University (Natural Science Edition), 2021, 18(1): 51–59. doi: 10.3969/j.issn.1672-7010.2021.01.007
    [25] 里海洋, 王成军, 于建桥, 等. 掺混孔排列方式对中心分级燃烧室性能的影响[J]. 滨州学院学报, 2021, 37(4): 5–11. doi: 10.13486/j.cnki.1673-2618.2021.04.001

    LI H Y, WANG C J, YU J Q, et al. Influence of mixing hole arrangement on performance of central staged combustion chamber[J]. Journal of Binzhou University, 2021, 37(4): 5–11. doi: 10.13486/j.cnki.1673-2618.2021.04.001
    [26] 刘日超, 乐嘉陵, 陈柳君, 等. 双旋流燃烧室两相喷雾试验和数值研究[J]. 实验流体力学, 2017, 31(5): 24–31. doi: 10.11729/syltlx20170093

    LIU R C, LE J L, CHEN L J, et al. Experimental and numerical study on spray atomization in a double-swirler combustor[J]. Journal of Experiments in Fluid Mechanics, 2017, 31(5): 24–31. doi: 10.11729/syltlx20170093
    [27] 樊艳娜, 毕明树, 周一卉, 等. 旋流作用下突扩燃烧室内冷态流场的 PIV 分析[J]. 实验流体力学, 2015, 29(6): 21–27. doi: 10.11729/syltlx20150056

    FAN Y N, BI M S, ZHOU Y H, et al. Cold-flow analysis on swirl-stabilized dump combustor by PIV[J]. Journal of Experiments in Fluid Mechanics, 2015, 29(6): 21–27. doi: 10.11729/syltlx20150056
    [28] 童秉纲, 孔祥言, 邓国华. 气体动力学[M]. 2版. 北京: 高等教育出版社, 2012.

    TONG B G, KONG X Y, DENG G H. Gas dynamics[M]. 2nd ed. Beijing: Higher Education Press, 2012.
    [29] 林宇震, 许全宏, 刘高恩. 燃气轮机燃烧室[M]. 北京: 国防工业出版社, 2008.

    LIN Y Z, XU Q H, LIU G E. Cas turbine combustor[M]. Beijing: National Defense Industry Press, 2008.
  • 加载中
图(12) / 表(3)
计量
  • 文章访问数:  123
  • HTML全文浏览量:  39
  • PDF下载量:  26
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-22
  • 修回日期:  2022-10-18
  • 录用日期:  2022-11-01
  • 网络出版日期:  2023-12-05
  • 刊出日期:  2023-12-30

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日