留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

支杆–钝体流场振荡试验研究及统计分析

王一帆 秦启豪 关瑞卿 徐惊雷

王一帆, 秦启豪, 关瑞卿, 等. 支杆–钝体流场振荡试验研究及统计分析[J]. 实验流体力学, doi: 10.11729/syltlx20220078
引用本文: 王一帆, 秦启豪, 关瑞卿, 等. 支杆–钝体流场振荡试验研究及统计分析[J]. 实验流体力学, doi: 10.11729/syltlx20220078
WANG Y F, QIN Q H, GUAN R Q, et al. Experimental study and statistical analysis of flow field pulsation of spiked cylinder[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220078
Citation: WANG Y F, QIN Q H, GUAN R Q, et al. Experimental study and statistical analysis of flow field pulsation of spiked cylinder[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220078

支杆–钝体流场振荡试验研究及统计分析

doi: 10.11729/syltlx20220078
基金项目: 国家科技重大专项(2019-Ⅱ-0007-0027);国防基础科研计划(JCKY2019605D001);基础加强计划项目(2022-JCJQ-ZD-115-00)
详细信息
    作者简介:

    王一帆:(1999—),男,山东济宁人,硕士研究生。研究方向:超声速流场测量技术。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学航空航天结构力学及控制全国重点实验室(210016)。E-mail:yifan@nuaa.edu.cn

    通讯作者:

    E-mail:xujl@nuaa.edu.cn

  • 中图分类号: V211.78

Experimental study and statistical analysis of flow field pulsation of spiked cylinder

  • 摘要: 针对超声速来流条件下支杆–钝体流场的非定常振荡现象,基于直连式风洞试验台与高速纹影测量系统,在Ma = 2.2来流条件下对尖头支杆–钝体构型与气动圆顶支杆–钝体构型开展了试验研究,并对试验结果进行了统计分析。首先根据瞬态结果对流场典型结构与演化历程进行了解释,随后通过残差收敛历程对统计结果的可靠性做出了评估,最后从时均流场和脉动流场两个方面进一步分析了流场的振荡特性。结果表明,超声速来流条件下的支杆–钝体流场存在着非定常的流场振荡现象,且在尖头支杆–钝体构型中更加剧烈,在气动圆顶支杆–钝体构型中有所衰减,证明了气动圆顶支杆对流场的非定常振荡具有抑制作用。
  • 图  1  直连式风洞及“Z”字形纹影光路示意图

    Figure  1.  Direct-connected wind tunnel and Z-type schlieren light path

    图  2  支杆–钝体构型

    Figure  2.  Spiked cylinder configurations

    图  3  气动圆顶支杆–钝体构型的装配示意图

    Figure  3.  Assembly diagram of spiked cylinder with aerodome

    图  4  Phantom VEO 710L科学级高速相机

    Figure  4.  Phantom VEO 710L scientific high-speed camera

    图  5  支杆–钝体构型的典型流场结构图。其中:1. 前体激波,在(a)尖头支杆–钝体构型中表现为弱锥形激波,在(b)气动圆顶支杆–钝体构型中表现为弓形脱体激波;2. 再附激波

    Figure  5.  Typical flow field structure of spiked cylinder configurations. 1. Forebody shock, which exhibits weak conical shock in the pointed spiked cylinder and bow shock in the spiked cylinder with aerodome; 2. Reattachment shock

    图  6  支杆-钝体构型在同一时间间隔内的流场振荡历程图。其中:1. 前体激波,在尖头支杆–钝体构型中表现为弱锥形激波,在气动圆顶支杆–钝体构型中表现为弓形脱体激波;2. 再附激波;3. 剪切层;4. 回流区

    Figure  6.  Flow field pulsating evolution in the same time interval for spiked cylinder configurations. 1. Forebody shock, which exhibits weak conical shock in the pointed spiked cylinder and bow shock in the spiked cylinder with aerodome; 2. Reattachment shock; 3. Shear layer; 4. Recirculation region

    图  7  统计结果的残差收敛历程

    Figure  7.  Residual convergence process of statistical results

    图  8  支杆–钝体构型的时均流场云图。其中:1. 前体激波振荡区域;2. 再附激波振荡区域;3. 复杂小尺度结构;4. 剪切层;5. 回流区

    Figure  8.  Time-averaged flow field contours for spiked cylinder configurations. 1. Pulsating region of forebody shock; 2. Pulsating region of reattachment shock; 3. Shocklets; 4. Shear layer; 5. Recirculation region

    图  9  支杆–钝体构型的流场脉动特性。其中:1. 前体激波振荡区域;2. 再附激波振荡区域;3. 复杂小尺度结构振荡区域;4. 剪切层;5. 回流区

    Figure  9.  Flow field fluctuating characteristics of spiked cylinder configurations. 1. Pulsating region of forebody shock; 2. Pulsating region of reattachment shock; 3. Shocklets; 4. Shear layer; 5. Recirculation region

    表  1  试验条件

    Table  1.   Experimental conditions

    马赫数Ma总温Tt,e/K总压Pt,e/kPa背压Pb/kPa雷诺数Re
    2.23051018.52.6 × 105
    下载: 导出CSV

    表  2  试验模型几何参数

    Table  2.   Geometric parameters of experimental models

    参数类型符号数值/mm
    圆柱钝体直径D40
    圆柱钝体轴向长度L40
    支杆长度l40
    支杆根部直径d2.6
    气动圆顶直径DA14.4
    下载: 导出CSV
  • [1] STEWARTSON K. On the linearized potential theory of unsteady supersonic motion[J]. The Quarterly Journal of Mechanics and Applied Mathematics, 1950, 3(2): 182–199. doi: 10.1093/qjmam/3.2.182
    [2] CLEMENS N T, NARAYANASWAMY V. Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions[J]. Annual Review of Fluid Mechanics, 2014, 46: 469–492. doi: 10.1146/annurev-fluid-010313-141346
    [3] SCHUELEIN E. Wave drag reduction approach for blunt bodies at high angles of attack: proof-of-concept experiments[C]//Proc of the 4th Flow Control Conference. 2008. doi: 10.2514/6.2008-4000
    [4] GNEMMI P, SRULIJES J, ROUSSEL K, et al. Flowfield around spike-tipped bodies for high attack angles at Mach 4.5[J]. Journal of Spacecraft and Rockets, 2003, 40(5): 622–631. doi: 10.2514/2.6910
    [5] ALEXANDER S. Results of tests to determine the effect of a conical windshield on the drag of a bluff body at supersonic speeds[R]. NACA-RM-L6K08a, 1947.
    [6] STALDER J R, NIELSEN H V. Heat transfer from a hemisphere-cylinder equipped with flow-separation spikes [R]. NACA-TN-3287, 1954.
    [7] CRAWFORD D H. Investigation of the flow over a spiked-nose hemisphere-cylinder at a Mach number of 6.8[R]. NASA TN D-118, 1959.
    [8] WOOD C J. Hypersonic flow over spiked cones[J]. Journal of Fluid Mechanics, 1962, 12(4): 614–624. doi: 10.1017/s0022112062000427
    [9] HOLDEN M S. Experimental studies of separated flows at hypersonic speeds. I - Separated flows over axisymmetric spiked bodies[J]. AIAA Journal, 1966, 4(4): 591–599. doi: 10.2514/3.3494
    [10] AHMED M Y M, QIN N. Forebody shock control devices for drag and aero-heating reduction: a comprehensive survey with a practical perspective[J]. Progress in Aerospace Sciences, 2020, 112: 100585. doi: 10.1016/j.paerosci.2019.100585
    [11] AHMED M Y M, QIN N. Recent advances in the aerothermodynamics of spiked hypersonic vehicles[J]. Progress in Aerospace Sciences, 2011, 47(6): 425–449. doi: 10.1016/j.paerosci.2011.06.001
    [12] HUANG W, CHEN Z, YAN L, et al. Drag and heat flux reduction mechanism induced by the spike and its combinations in supersonic flows: a review[J]. Progress in Aerospace Sciences, 2019, 105: 31–39. doi: 10.1016/j.paerosci.2018.12.001
    [13] SUN X W, HUANG W, OU M, et al. A survey on numerical simulations of drag and heat reduction mechanism in supersonic/hypersonic flows[J]. Chinese Journal of Aeronautics, 2019, 32(4): 771–784. doi: 10.1016/j.cja.2018.12.024
    [14] WANG Z G, SUN X W, HUANG W, et al. Experimental investigation on drag and heat flux reduction in supersonic/hypersonic flows: a survey[J]. Acta Astronautica, 2016, 129: 95–110. doi: 10.1016/j.actaastro.2016.09.004
    [15] HUANG W. A survey of drag and heat reduction in supersonic flows by a counterflowing jet and its combinations[J]. Journal of Zhejiang University-SCIENCE A, 2015, 16(7): 551–561. doi: 10.1631/jzus.A1500021
    [16] OU M, YAN L, HUANG W, et al. Detailed parametric investigations on drag and heat flux reduction induced by a combinational spike and opposing jet concept in hypersonic flows[J]. International Journal of Heat and Mass Transfer, 2018, 126: 10–31. doi: 10.1016/j.ijheatmasstransfer.2018.05.013
    [17] LI S B, HUANG W, LEI J, et al. Drag and heat reduction mechanism of the porous opposing jet for variable blunt hypersonic vehicles[J]. International Journal of Heat and Mass Transfer, 2018, 126: 1087–1098. doi: 10.1016/j.ijheatmasstransfer.2018.06.054
    [18] XUE Y, WANG L, FU S. Detached-eddy simulation of supersonic flow past a spike-tipped blunt nose[J]. Chinese Journal of Aeronautics, 2018, 31(9): 1815–1821. doi: 10.1016/j.cja.2018.06.016
    [19] KENWORTHY M A. A study of unstable axisymmetric separation in high speed flows [D]. Blacksburg: Virginia Polytechnic Institute and State University, 1978.
    [20] FESZTY D, BADCOCK K J, RICHARDS B E. Driving mechanisms of high-speed unsteady spiked body flows, part I: pulsation mode[J]. AIAA Journal, 2004, 42(1): 95–106. doi: 10.2514/1.9034
    [21] FESZTY D, BADCOCK K J, RICHARDS B E. Driving mechanism of high-speed unsteady spiked body flows, part 2: oscillation mode[J]. AIAA Journal, 2004, 42(1): 107–113. doi: 10.2514/1.9035
    [22] QIN Q H, GUAN R Q, MA Z, et al. Experimental verification of pulsation suppression over spiked cylinder using standard/double/inverse aerodome[J]. Aerospace Science and Technology, 2021, 116: 106848. doi: 10.1016/j.ast.2021.106848
    [23] SAHOO D, DAS S, KUMAR P, et al. Effect of spike on steady and unsteady flow over a blunt body at supersonic speed[J]. Acta Astronautica, 2016, 128: 521–533. doi: 10.1016/j.actaastro.2016.08.005
    [24] SAHOO D, KARTHICK S K, DAS S, et al. Shock-related unsteadiness of axisymmetric spiked bodies in supersonic flow[J]. Experiments in Fluids, 2021, 62(4): 89. doi: 10.1007/s00348-020-03130-2
    [25] WANG Z A, CHANG J T, WU G W, et al. Experimental investigation of shock train behavior in a supersonic isolator[J]. Physics of Fluids, 2021, 33(4): 046103. doi: 10.1063/5.0047665
    [26] COMBS C S, SCHMISSEUR J D, BATHEL B F, et al. Unsteady analysis of shock-wave/boundary-layer interaction experiments at Mach 4.2[J]. AIAA Journal, 2019, 57(11): 4715–4724. doi: 10.2514/1.j058073
    [27] SUN Z Z, GAN T, WU Y. Shock-wave/boundary-layer interactions at compression ramps studied by high-speed schlieren[J]. AIAA Journal, 2019, 58(4): 1681–1688. doi: 10.2514/1.J058257
    [28] SUN Z Z, MIAO X, JAGADEESH C. Experimental investigation of the transonic shock-wave/boundary-layer interaction over a shock-generation bump[J]. Physics of Fluids, 2020, 32(10): 106102. doi: 10.1063/5.0018763
  • 加载中
图(9) / 表(2)
计量
  • 文章访问数:  219
  • HTML全文浏览量:  78
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-18
  • 修回日期:  2022-09-16
  • 录用日期:  2022-10-10
  • 网络出版日期:  2023-03-14

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日