留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

水下无源流体推力矢量喷管流动特性研究

冯潮 顾蕴松 方瑞山 周宇航 史楠星

冯潮,顾蕴松,方瑞山,等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学. doi: 10.11729/syltlx20220071
引用本文: 冯潮,顾蕴松,方瑞山,等. 水下无源流体推力矢量喷管流动特性研究[J]. 实验流体力学. doi: 10.11729/syltlx20220071
FENG C,GU Y S,FANG R S,et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220071
Citation: FENG C,GU Y S,FANG R S,et al. Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle[J]. Journal of Experiments in Fluid Mechanics. doi: 10.11729/syltlx20220071

水下无源流体推力矢量喷管流动特性研究

doi: 10.11729/syltlx20220071
基金项目: 国家自然科学基金面上项目(11972017)
详细信息
    作者简介:

    冯潮:(1998—),女,河南鹤壁人,硕士研究生。研究方向:实验流体力学。通信地址:江苏省南京市秦淮区御道街29号南京航空航天大学明故宫校区飞行测控创新实验室(210016)。E-mail:fengchao@nuaa.edu.cn

    通讯作者:

    E-mail:yunsonggu@nuaa.edu.cn

  • 中图分类号: V211.7

Research on flow characteristics of underwater passive fluidic thrust vectoring nozzle

  • 摘要: 本文设计了一种水下无源流体推力矢量喷管,仅通过控制二次流阀门开闭,即可使主射流上下侧产生压差而发生偏转,但推力矢量角控制规律中的“突跳”和“迟滞”等非线性问题限制了该技术的工程应用。采用染色液流动显示技术和粒子图像测速技术,研究了喷管不同横向截面和纵向截面主射流附壁、离壁时的流动特性。研究结果表明:喷管内部存在剪切层旋涡、尾缘倒吸和分离泡等流动结构,同时近壁面存在横向流动,角区存在“角涡”结构。流动结构之间的相互作用规律,为解决推力矢量角控制规律中的“突跳”和“迟滞”等非线性问题提供了物理模型基础。
  • 图  1  英国“泰利斯曼”近海无人水下航行器

    Figure  1.  British "Talisman" offshore unmanned vehicle

    图  2  矢量角与压力比值随流量系数变化曲线[23]

    Figure  2.  Variation curve of vector deflection angle and pressure ratio with flow coefficient[23]

    图  3  实验模型示意图

    Figure  3.  Schematic diagram of experimental model

    图  4  无源流体推力矢量喷管主射流偏转控制示意图

    Figure  4.  Schematic diagram of main jet deflection of passive fluid thrust vectoring nozzle

    图  5  水下无源流体推力矢量喷管实验系统

    Figure  5.  Composition of a new underwater fluid thrust vectoring nozzle experimental system in a small water tank

    图  6  定性流动显示实验平台示意图

    Figure  6.  Schematic diagram of qualitative flow display experimental platform

    图  7  喷管模型流场PIV测量光路布局和测量截面位置示意图

    Figure  7.  Schematic diagram for layout of PIV measuring optical path and location of measuring section of nozzle model flow field

    图  8  主射流中立状态下的Z–50%截面整体流动情况

    Figure  8.  Overall flow of Z–50% section under neutral state of main jet

    图  9  主射流中立状态下的Z–50%截面尾缘倒吸旋涡染色液流动显示结果

    Figure  9.  Flow visualization results of dye solution in the inverted vortex at the trailing edge of Z–50% section under the neutral state of the main jet

    图  10  主射流中立–流动结构示意图

    Figure  10.  Main jet neutral – flow structure diagram

    图  11  主射流中立时不同纵向截面上的染色液流动显示结果

    Figure  11.  Display results of dye flow in longitudinal sections at different spanwise positions when the jet is neutral

    图  12  主射流中立时不同纵向截面的PIV实验结果

    Figure  12.  PIV experimental results of longitudinal sections at different longitudinal positions when the jet is neutral

    图  13  主射流上偏时Z–50%截面流动显示结果

    Figure  13.  Flow display results of jet upwards: Z–50% section

    图  14  主射流上偏时Z–50%截面PIV实验结果

    Figure  14.  PIV test results of Z–50% section of jet upward deviation

    图  15  主射流上偏流动结构示意图

    Figure  15.  Schematic diagram of jet upward flow structure

    图  16  主射流上偏时不同纵向截面染色液流动显示结果

    Figure  16.  Display results of dye flow in longitudinal sections at different spanwise positions with the jet upward deviation

    图  17  主射流上偏时不同纵向截面的PIV实验结果图

    Figure  17.  PIV test results of longitudinal sections at different spanning positions with the jet upward deviation

    图  18  尾缘处的横向流动

    Figure  18.  Lateral flow at trailing edge

    图  19  三维流动角区“角涡”流动

    Figure  19.  “Corner vortex” flow in three-dimensional flow corner area

    图  20  X–100%截面的主射流中立流场

    Figure  20.  Neutral flow field of X–100% cross section jet

    图  21  X–100%截面的主射流上偏流场

    Figure  21.  Bias field results on X–100% cross section jet

  • [1] 郭隆华. BAE系统公司推出“泰利斯曼”近海UUV进行近距离侦查[J]. 舰船科学技术, 2009, 31(7): 98.
    [2] 难波直爱, 清水彻, 渡道昶彦, 等. 全方向推力推進器の開発(その1)[C]//日本船舶海洋工学会. 关西造船协会志: 210卷. 1988: 1-8.doi: 10.14856/kansaiks.210.0_1
    [3] 常欣, 邹经湘, 郭春雨, 等. 螺距角和纵倾角对全方向推进器水动力性能的影响[J]. 船海工程, 2010, 39(2): 26–29. doi: 10.3963/j.issn.1671-7953.2010.02.007

    CHANG X, ZOU J X, GUO C Y, et al. The influence of pitch angle and rake angle upon hydrodynamic performance for variable vector propeller[J]. Ship & Ocean Engineering, 2010, 39(2): 26–29. doi: 10.3963/j.issn.1671-7953.2010.02.007
    [4] 贡毅敏. 全方向推进器的设计及其在潜艇上的应用研究[D]. 哈尔滨: 哈尔滨工程大学, 2006.

    GONG Y M. The design of variable vector propeller and research on the application to submarine[D]. Harbin: Harbin Engineering University, 2006.
    [5] 付建, 宋振海, 王永生, 等. 泵喷推进器水动力噪声的数值预报[J]. 船舶力学, 2016, 20(5): 613–619. doi: 10.3969/j.issn.1007-7294.2016.05.012

    FU J, SONG Z H, WANG Y S, et al. Numerical predicting of hydroacoustics of pumpjet propulsor[J]. Journal of Ship Mechanics, 2016, 20(5): 613–619. doi: 10.3969/j.issn.1007-7294.2016.05.012
    [6] 鹿麟. 泵喷推进器设计与流场特性研究[D]. 西安: 西北工业大学, 2016.

    LU L. Reaseach on design and flow field characteristic of the pumpjet propulsor[D]. Xi'an: Northwestern Polytechnical University, 2016.
    [7] 周运凯. 水下泵喷推进器设计方法与数值优化研究[D]. 镇江: 江苏大学, 2020.

    ZHOU Y K. Research on underwater pumpjet design method and numerical optimization[D]. Zhenjiang: Jiangsu University, 2020. doi: 10.27170/d.cnki.gjsuu.2020.000131
    [8] ROBER N, CICHELLA V, EZEQUIEL MARTIN J, et al. Three-dimensional path-following control for an underwater vehicle[J]. Journal of Guidance, Control, and Dynamics, 2021, 44(7): 1345–1355. doi: 10.2514/1.G005503
    [9] ALLISON J. Marine waterjet propulsion[C]//Proceedings of the SNAME Annual Meeting. New York, USA: SNAME, 1993, 101: 275-335.
    [10] ARL. The history of the past, highly classified centre of physical research, problem-solving and operational improvements for the Royal Navy: Admiralty Research Laboratory (ARL) [EB/OL]. [2018-7-31]. http://arl-teddington.org.uk/.
    [11] 刘文峰, 胡欲立. 新型水下集成电机推进装置的泵喷射推进器结构原理及特点分析[J]. 鱼雷技术, 2007, 15(6): 5–8.

    LIU W F, HU Y L. Analysis of construction principle and characteristics of pump-jet for underwater integrated motor propulsor[J]. Torpedo Technology, 2007, 15(6): 5–8.
    [12] NAWROT M T. Conceptual design of a thrust-vectoring tailcone for underwater robotics[D]. Cambridge, MA, USA: Massachusetts Institute of Technology, 2012.
    [13] CAVALLO E, MICHELINI R C, FILARETOV V F. Conceptual design of an AUV equipped with a three degrees of freedom vectored thruster[J]. Journal of Intelligent and Robotic Systems, 2004, 39(4): 365–391. doi: 10.1023/b:jint.0000026081.75417.50
    [14] 魏东杰. 水下机器人并联式矢量推进器设计与研究[D]. 天津: 天津大学, 2014.

    WEI D J. Design and research of the underwater robot vectored thruster with parallel mechanism[D]. Tianjin: Tianjin University, 2014.
    [15] 耿令波, 胡志强, 林扬, 等. 基于横向二次射流的水下推力矢量方法[J]. 航空动力学报, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016

    GENG L B, HU Z Q, LIN Y, et al. Underwater thrust vectoring method based on cross second flow[J]. Journal of Aerospace Power, 2017, 32(8): 1922–1932. doi: 10.13224/j.cnki.jasp.2017.08.016
    [16] 韩杰星. 流体矢量喷管内外流耦合研究[D]. 南京: 南京航空航天大学, 2018.

    HAN J X. A study for inner-outer flow coupling of the fluidic thrust vector nozzle[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2018.
    [17] FLAMM J. Experimental study of a nozzle using fluidic counterflow for thrust vectoring[C]//Proc of the 34th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. 1998: 3255. doi: 10.2514/6.1998-3255
    [18] 刘赵淼, 徐迎丽, 申峰. 几何构型对逆流推力矢量喷管特性影响[J]. 航空动力学报, 2014, 29(6): 1417–1425. doi: 10.13224/j.cnki.jasp.2014.06.023

    LIU Z M, XU Y L, SHEN F. Geometric configuration on the performance of counterflow thrust vectoring nozzle[J]. Journal of Aerospace Power, 2014, 29(6): 1417–1425. doi: 10.13224/j.cnki.jasp.2014.06.023
    [19] CHANDRA SEKAR T, JAISWAL K, ARORA R, et al. Nozzle performance maps for fluidic thrust vectoring[J]. Journal of Propulsion and Power, 2021, 37(2): 314–325. doi: 10.2514/1.b38044
    [20] WU K X, KIM T, KIM H. Sensitivity analysis of counterflow thrust vector control with a three-dimensional rectangular nozzle[J]. Journal of Aerospace Engineering, 2021, 34(1): 04020107. doi: 10.1061/(asce)as.1943-5525.0001228
    [21] BOURQUE C, NEWMAN B G. Reattachment of a two-dimensional, incompressible jet to an adjacent flat plate[J]. Aeronautical Quarterly, 1960, 11(3): 201–232. doi: 10.1017/s0001925900001797
    [22] LI Y J. Fluidic thrust vectoring techniques research[J]. Aircraft Design, 2008, 28(2): 19–24.
    [23] 肖中云, 顾蕴松, 江雄, 等. 一种基于引射效应的流体推力矢量新技术[J]. 航空学报, 2012, 33(11): 1967–1974.

    XIAO Z Y, GU Y S, JIANG X, et al. A new fluidic thrust vectoring technique based on ejecting mixing effects[J]. Acta Aeronautica et Astronautica Sinica, 2012, 33(11): 1967–1974.
    [24] 史经纬, 王占学, 张晓博, 等. 逆流推力矢量喷管主流附体及控制方法研究[J]. 空气动力学学报, 2013, 31(6): 723–726, 738.

    SHI J W, WANG Z X, ZHANG X B, et al. Study on counter-flow thrust vectoring nozzle jet attachment and control[J]. Acta Aerodynamica Sinica, 2013, 31(6): 723–726, 738.
    [25] 龚东升, 顾蕴松, 周宇航, 等. 基于微型涡喷发动机热喷流的无源流体推力矢量喷管的控制规律[J]. 航空学报, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609

    GONG D S, GU Y S, ZHOU Y H, et al. Control law of passive fluid thrust vector nozzle based on thermal jet of micro turbojet engine[J]. Acta Aeronautica et Astronautica Sinica, 2020, 41(10): 123609. doi: 10.7527/S1000-6893.2019.23609
    [26] 龚东升. 基于微型涡喷发动机的无源流体推力矢量喷管的研究[D]. 南京: 南京航空航天大学, 2020.

    GONG D S. Research on passive fluid thrust vector nozzle based on micro turbojet engine[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020. doi: 10.27239/d.cnki.gnhhu.2020.000492
    [27] 温俊杰. 无源受控扰动下Coanda附壁射流离壁过程研究[D]. 南京: 南京航空航天大学, 2019.

    WEN J J. Study on the transient separation process of coanda wall-attached jet under passive controlled excitation[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019. doi: 10.27239/d.cnki.gnhhu.2019.000032
    [28] SHI N X, GU Y S, ZHOU Y H, et al. Mechanism of hysteresis and uncontrolled deflection in jet vectoring control based on Coanda effect[J]. Physics of Fluids, 2022, 34(8): 084107. doi: 10.1063/5.0101994
    [29] 曹永飞. 射流推力矢量控制[D]. 南京: 南京航空航天大学, 2012.

    CAO Y F. Fluidic thrust vector control[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2012.
  • 加载中
图(21)
计量
  • 文章访问数:  215
  • HTML全文浏览量:  121
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-08-03
  • 修回日期:  2022-10-12
  • 录用日期:  2022-10-13
  • 网络出版日期:  2022-12-27

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日