留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低温表面过冷水滴撞击动力学和冻结行为实验研究

杨再利 王敬鑫 朱春玲 赵宁 朱程香

杨再利, 王敬鑫, 朱春玲, 等. 低温表面过冷水滴撞击动力学和冻结行为实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220051
引用本文: 杨再利, 王敬鑫, 朱春玲, 等. 低温表面过冷水滴撞击动力学和冻结行为实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220051
YANG Z L, WANG J X, ZHU C L, et al. Experimental investigations on impingement dynamics and freezing behaviors of a supercooled water droplet onto a cold substrate[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220051
Citation: YANG Z L, WANG J X, ZHU C L, et al. Experimental investigations on impingement dynamics and freezing behaviors of a supercooled water droplet onto a cold substrate[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220051

低温表面过冷水滴撞击动力学和冻结行为实验研究

doi: 10.11729/syltlx20220051
基金项目: 国家自然科学基金项目(11832012)
详细信息
    作者简介:

    杨再利:(1994—),男,辽宁沈阳人,硕士研究生。研究方向:飞机结冰与水滴动力学。通信地址:江苏省南京市秦淮区瑞金路南京航空航天大学航空学院(210016)。E-mail:1182537992@qq.com

    通讯作者:

    E-mail:clzhu@nuaa.edu.cn

  • 中图分类号: V211.71

Experimental investigations on impingement dynamics and freezing behaviors of a supercooled water droplet onto a cold substrate

  • 摘要: 对低温表面毫米级过冷水滴的撞击冻结耦合过程进行实验研究,综合分析了水滴撞击速度、水滴过冷度(0~10 ℃)和基板温度对水滴撞击动力学和冻结行为的影响。研究表明:当撞击速度一定时,最大铺展直径系数随着水滴过冷度的降低而减小,但和基板温度无关,提出了一个修正模型来描述最大铺展直径系数的实验结果;成核时间随基板温度降低而提前,导致最终冻结面积增大,当基板温度为−24~−28 ℃,“珊瑚状”成核点在回缩阶段的三相接触线上形成;当基板温度低于−28 ℃,“菌状”成核点在铺展阶段中出现;水滴回缩动力学和冻结耦合作用决定冻结形貌,最大铺展面积的增大促结冰形貌由“煎饼状”向“盆状”转变。
  • 图  1  实验装置示意图

    Figure  1.  Schematic of the experimental setup.

    图  2  过冷水滴温度变化曲线

    Figure  2.  Temperature evolution of supercooled water droplets

    图  3  撞击图片序列(Ⅰ:D0=2.75 mm、v0=1.67 m/s、Ts=−20 ℃; Ⅱ:D0=2.75 mm、v0=1.67m/s、Ts=25 ℃;Ⅲ:D0=2.75 mm、v0=1.67 m/s、Ts=−30 ℃)

    Figure  3.  Sequence images of the impact process (Ⅰ:D0=2.75 mm、v0=1.67 m/s、Ts=−20 ℃; Ⅱ:D0=2.75 mm、v0=1.67m/s、Ts=25 ℃;Ⅲ:D0=2.75 mm、v0=1.67 m/s、Ts=−30 ℃)

    图  10  过冷水滴撞击动力学过程和相变过程:(a) 平衡阶段成核;(b)在回缩过程中成核;(c)在铺展过程成核

    Figure  10.  Coupling process of droplet dynamics and phase change. (a) The nucleus formation during the equilib- rium phase; (b) The nucleus formation during the receding stage; (c) The nucleus formation during the spreading stage.

    图  4  不同基板温度铺展系数随时间演化

    Figure  4.  Temporal evolutions of spreading diameter factor for different substrate temperatures (D0=2.75 mm, V0=1.67 m/s, Tw=−10 ℃)

    图  5  不同基板温度下高度系数随时间演化

    Figure  5.  Temporal evolutions of height factor at different substrate temperatures (D0=2.75 mm,V0=1.67 m/s,Tw=−10 ℃)

    图  6  不同过冷度过冷水滴铺展系数随时间演化

    Figure  6.  Temporal evolutions of spreading diameter factor for different droplet temperatures (D0=2.75 mm, Ts=−25 ℃, V0=1.67 m/s)

    图  7  基板温度和韦伯数最大铺展直径系数的影响

    Figure  7.  Effects of substrate temperature and impact weber number on the maximum spreading diameter factor(D0 = 2.75 mm, Tw = −7.5 ℃)

    图  8  撞击速度和水滴过冷度对最大铺展直径系数的影响

    Figure  8.  Effects of impact velocity and droplet temperature on the maximum spreading diameter factor(D0 = 2.75 mm,Ts = −20 ℃)

    图  9  WeRe−2/5为函数的最大铺展直径系数

    Figure  9.  The maximum spreading diameter factor as a function of WeRe−2/5

    图  12  基板温度对冰珠剖面的影响

    Figure  12.  Effect of substrate temperatures on the ice bead profiles from a side view.

    图  11  最终润湿面积比vs初始水滴温度和韦伯数

    Figure  11.  The final wetted area ratio vs initial droplet temperature and impact weber number

    图  13  雷诺数对冰珠剖面的影响

    Figure  13.  Effect of Reynolds number on the ice bead profiles from a side view.

    图  14  过冷水滴撞击冷基板三种不同冻结形貌相图

    Figure  14.  Phase diagram of three freezing morphologies for a supercooled water droplet impinging on a cold substrate.

    表  1  实验参数

    Table  1.   Experimental parameters

    参数数值
    水滴直径${D_0}$/mm2.75±0.05
    撞击速度${V_0}$/(m·s-11.67、2.00、2.60
    水滴温度${T_w}/ ℃$0、−5、−10
    基板温度${T_s} / ℃$−20、−25、−30
    下载: 导出CSV
  • [1] CAO Y H, TAN W Y, WU Z L. Aircraft icing: an ongoing threat to aviation safety[J]. Aerospace Science and Technology, 2018, 75: 353–385. doi: 10.1016/j.ast.2017.12.028
    [2] KONG W L, LIU H. A theory on the icing evolution of supercooled water near solid substrate[J]. International Journal of Heat and Mass Transfer, 2015, 91: 1217–1236. doi: 10.1016/j.ijheatmasstransfer.2015.08.005
    [3] ZHANG H H, JIN Z Y, JIAO M S, et al. Experimental investigation of the impact and freezing processes of a water droplet on different cold concave surfaces[J]. International Journal of Thermal Sciences, 2018, 132: 498–508. doi: 10.1016/j.ijthermalsci.2018.06.032
    [4] JU J J, JIN Z Y, ZHANG H H, et al. The impact and freezing processes of a water droplet on different cold spherical surfaces[J]. Experimental Thermal and Fluid Science, 2018, 96: 430–440. doi: 10.1016/j.expthermflusci.2018.03.037
    [5] LI H X, WALDMAN R M, HU H. An experimental investigation on unsteady heat transfer and transient icing process upon impingement of water droplets[C]//Proc of the 54th AIAA Aerospace Sciences Meeting. 2016: 0510. doi: 10.2514/6.2016-0510
    [6] YAO Y N, LI C, TAO Z X, et al. Experimental and numerical study on the impact and freezing process of a water droplet on a cold surface[J]. Applied Thermal Engineering, 2018, 137: 83–92. doi: 10.1016/j.applthermaleng.2018.03.057
    [7] HE S Y, LI T H, HUANG Z Q, et al. Screening silica-confined single-atom catalysts for nonoxidative conversion of methane[J]. The Journal of Chemical Physics, 2021, 154(17): 174706. doi: 10.1063/5.0048962
    [8] HOU J Q, GONG J Y, WU X, et al. Numerical study on impacting-freezing process of the droplet on a lateral moving cold superhydrophobic surface[J]. International Journal of Heat and Mass Transfer, 2022, 183: 122044. doi: 10.1016/j.ijheatmasstransfer.2021.122044
    [9] YAO Y N, LI C, ZHANG H, et al. Modelling the impact, spreading and freezing of a water droplet on horizontal and inclined superhydrophobic cooled surfaces[J]. Applied Surface Science, 2017, 419: 52–62. doi: 10.1016/j.apsusc.2017.04.085
    [10] LIU X, MIN J C, ZHANG X, et al. Supercooled water droplet impacting-freezing behaviors on cold superhydrophobic spheres[J]. International Journal of Multiphase Flow, 2021, 141: 103675. doi: 10.1016/j.ijmultiphaseflow.2021.103675
    [11] ZHANG X, LIU X, WU X M, et al. Impacting-freezing dynamics of a supercooled water droplet on a cold surface: rebound and adhesion[J]. International Journal of Heat and Mass Transfer, 2020, 158: 119997. doi: 10.1016/j.ijheatmasstransfer.2020.119997
    [12] ZHANG C, LIU H. Effect of drop size on the impact thermodynamics for supercooled large droplet in aircraft icing[J]. Physics of Fluids, 2016, 28(6): 062107. doi: 10.1063/1.4953411
    [13] LI H, ROISMAN I V, TROPEA C. Influence of solidification on the impact of supercooled water drops onto cold surfaces[J]. Experiments in Fluids, 2015, 56(6): 133. doi: 10.1007/s00348-015-1999-2
    [14] 张旋, 刘鑫, 吴晓敏, 等. 过冷水滴碰撞结冰的实验与模拟研究[J]. 工程热物理学报, 2020, 41(2): 402–410.
    [15] CHANG S N, DING L, SONG M J, et al. Numerical investigation on impingement dynamics and freezing performance of micrometer-sized water droplet on dry flat surface in supercooled environment[J]. International Journal of Multiphase Flow, 2019, 118: 150–164. doi: 10.1016/j.ijmultiphaseflow.2019.06.011
    [16] PASANDIDEH-FARD M, QIAO Y M, CHANDRA S, et al. Capillary effects during droplet impact on a solid surface[J]. Physics of Fluids, 1996, 8(3): 650–659. doi: 10.1063/1.868850
    [17] ROISMAN I V. Inertia dominated drop collisions. II. An analytical solution of the Navier–Stokes equations for a spreading viscous film[J]. Physics of Fluids, 2009, 21(5): 052104. doi: 10.1063/1.3129283
    [18] VADILLO D C, SOUCEMARIANADIN A, DELATTRE C, et al. Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces[J]. Physics of Fluids, 2009, 21(12): 122002. doi: 10.1063/1.3276259
    [19] LAAN N, DE BRUIN K G, BARTOLO D, et al. Maximum diameter of impacting liquid droplets[J]. Physical Review Applied, 2014, 2(4): 044018. doi: 10.1103/physrevapplied.2.044018
    [20] EGGERS J, FONTELOS M A, JOSSERAND C, et al. Drop dynamics after impact on a solid wall: theory and simulations[J]. Physics of Fluids, 2010, 22(6): 062101. doi: 10.1063/1.3432498
    [21] HU H, JIN Z Y. An icing physics study by using lifetime-based molecular tagging thermometry technique[J]. International Journal of Multiphase Flow, 2010, 36(8): 672–681. doi: 10.1016/j.ijmultiphaseflow.2010.04.001
    [22] ZHANG X, LIU X, MIN J C, et al. Shape variation and unique tip formation of a sessile water droplet during freezing[J]. Applied Thermal Engineering, 2019, 147: 927–934. doi: 10.1016/j.applthermaleng.2018.09.040
    [23] WANG C Y, WU X, HAO P F, et al. Study on a mesoscopic model of droplets freezing considering the recalescence process[J]. Physics of Fluids, 2021, 33(9): 092001. doi: 10.1063/5.0064976
    [24] YANG G M, GUO K H, LI N. Freezing mechanism of supercooled water droplet impinging on metal surfaces[J]. International Journal of Refrigeration, 2011, 34(8): 2007–2017. doi: 10.1016/j.ijrefrig.2011.07.001
    [25] SUN M M, KONG W L, WANG F X, et al. Effect of nucleation and icing evolution on Run-back freezing of supercooled water droplet[J]. Aerospace Systems, 2019, 2(2): 147–153. doi: 10.1007/s42401-019-00032-y
    [26] SCHREMB M, ROISMAN I V, JAKIRLIĆ S, et al. Freezing behavior of supercooled water drops impacting onto a cold surface[C]// Proc of the 27th Annual Conference on Liquid Atomization and Spray Systems. 2016.
    [27] FANG W Z, ZHU F Q, TAO W Q, et al. How different freezing morphologies of impacting droplets form[J]. Journal of Colloid and Interface Science, 2021, 584: 403–410. doi: 10.1016/j.jcis.2020.09.119
    [28] SUN M M, KONG W L, WANG F X, et al. Impact freezing modes of supercooled droplets determined by both nucleation and icing evolution[J]. International Journal of Heat and Mass Transfer, 2019, 142: 118431. doi: 10.1016/j.ijheatmasstransfer.2019.07.081
    [29] WANG L P, KONG W L, WANG F X, et al. Effect of nucleation time on freezing morphology and type of a water droplet impacting onto cold substrate[J]. International Journal of Heat and Mass Transfer, 2019, 130: 831–842. doi: 10.1016/j.ijheatmasstransfer.2018.10.142
    [30] ZHANG R, HAO P F, ZHANG X W, et al. Supercooled water droplet impact on superhydrophobic surfaces with various roughness and temperature[J]. International Journal of Heat and Mass Transfer, 2018, 122: 395–402. doi: 10.1016/j.ijheatmasstransfer.2018.01.076
    [31] ZHU C X, TAO M J, ZHAO N, et al. Study of droplet shadow zone of aircraft wing with diffusion effects[J]. AIAA Journal, 2019, 57(8): 3339–3348. doi: 10.2514/1.J058241
    [32] MAO T, KUHN D C S, TRAN H. Spread and rebound of liquid droplets upon impact on flat surfaces[J]. AIChE Journal, 1997, 43(9): 2169–2179. doi: 10.1002/aic.690430903
  • 加载中
图(14) / 表(1)
计量
  • 文章访问数:  149
  • HTML全文浏览量:  92
  • PDF下载量:  17
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-06-16
  • 修回日期:  2022-07-26
  • 录用日期:  2022-08-03
  • 网络出版日期:  2023-06-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日