留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高分子溶液中微尺度流动影响纳米粒子扩散的实验研究

曲恒超 郑平 薛春东 覃开蓉

曲恒超, 郑平, 薛春东, 等. 高分子溶液中微尺度流动影响纳米粒子扩散的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220048
引用本文: 曲恒超, 郑平, 薛春东, 等. 高分子溶液中微尺度流动影响纳米粒子扩散的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220048
QU H C, ZHENG P, XUE C D, et al. Experimental study on the effect of microscale flow on nanoparticle diffusion in polymer solutions[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220048
Citation: QU H C, ZHENG P, XUE C D, et al. Experimental study on the effect of microscale flow on nanoparticle diffusion in polymer solutions[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220048

高分子溶液中微尺度流动影响纳米粒子扩散的实验研究

doi: 10.11729/syltlx20220048
基金项目: 国家自然科学基金(11802054,12172081);辽宁省自然科学基金(2021-MS-133),中国博士后科学基金(2019M651106)
详细信息
    作者简介:

    曲恒超:(1997—),女,满族,辽宁丹东人,硕士研究生。研究方向:微尺度流动与纳米颗粒扩散。通信地址:辽宁省大连市甘井子区凌工路2号大连理工大学光电工程与仪器科学学院(116024)。E-mail:quhc@mail.dlut.edu.cn

    通讯作者:

    E-mail:xuechundong@dlut.edu.cn

  • 中图分类号: O359,O363

Experimental study on the effect of microscale flow on nanoparticle diffusion in polymer solutions

  • 摘要: 生理介质中的纳米粒子扩散在生命演化、信息传递、药物输运等过程中至关重要。黏液、组织液、细胞质等生理介质不仅具有复杂多孔特性,还往往表现出生命活动相关的微尺度流动。流动与扩散的相互影响异常复杂,且受到生理介质的多孔特性影响。实验利用微流控技术构建高分子溶液微尺度流动环境,采用粒子追踪技术测量纳米粒子的运动,基于统计特征量表征纳米粒子的运动特性,分析微尺度流动对纳米粒子扩散的影响。结果显示,微尺度流动对流动方向和垂直于流动方向上纳米粒子扩散均产生影响;流动方向上纳米粒子扩散的受限程度减弱,呈现次扩散、布朗扩散到超扩散多阶段特征;垂直于流动方向上纳米粒子的扩散呈现近似布朗特征,但扩散系数相较于静态情形有明显提高。分析表明,高分子溶液中微尺度流动对纳米颗粒扩散的影响主要源于高分子网络结构及其动力学的改变。研究结果可为解读生理介质中纳米颗粒输运机制及纳米药物设计与输运增强应用有一定参考。
  • 图  1  所使用PEO溶液的黏度测量曲线

    Figure  1.  Viscosity measurement curve of the used PEO solution

    图  2  微流控芯片的实物图

    Figure  2.  Real picture of microfluidic chip

    图  3  实验平台装置图

    Figure  3.  Diagram of the Experimental platform

    图  4  纳米粒子的图像处理

    Figure  4.  Image processing of nanoparticles

    图  5  3种Pe流动条件下纳米粒子运动的典型轨迹

    Figure  5.  Typical trajectories of individual nanoparticles at three Pe

    图  6  不同Pe下纳米粒子运动的e-MSD曲线

    Figure  6.  e-MSD curves of nanoparticle motion at different Pe

    图  7  不同Pe下纳米粒子运动的e-MSD曲线

    Figure  7.  e-MSD curves of nanoparticle motion at different Pe

    图  8  流动条件下纳米粒子运动的典型DPD图

    Figure  8.  Typical DPD diagram of nanoparticle motion under flow conditions.

    图  9  流动条件下纳米粒子运动的非高斯系数随时间的变化典型曲线

    Figure  9.  Typical curves of non-Gaussian coefficients of nanoparticle motion under flow conditions with time

    图  10  流动条件下纳米粒子运动的典型t-MSD曲线

    Figure  10.  Typical t-MSD curve of nanoparticle motion under flow conditions

    图  11  流动分量去除后x轴和y轴方向上纳米粒子运动的遍历破坏参数随时间变化的典型曲线

    Figure  11.  Typical time-varied curves of ergodicity breaking parameters (EB) of nanoparticle motion at x and y axes under the condition of removing flow information

    表  1  实验中流速与Pe的对应关系

    Table  1.   Corresponding relationship between flow velocity and Pe in experiment

    流速v/(μm·s−1Pe
    11.9 ± 0.120.39
    24.9 ± 0.171.08
    31.8 ± 0.073.69
    下载: 导出CSV
  • [1] 夏懿. 复杂流体流动与传热及内含颗粒运动特性的研究[D]. 杭州: 浙江大学, 2019.

    XIA Y. Research on the flow and heat transfer characteristics of complex fluid and the motion behavior of suspended particles[D]. Hangzhou: Zhejiang University, 2019.
    [2] ZHANG Y J, DUDKO O K. First-passage processes in the genome[J]. Annual Review of Biophysics, 2016, 45: 117–134. doi: 10.1146/annurev-biophys-062215-010925
    [3] KOVTUN O, SAKRIKAR D, TOMLINSON I D, et al. Single-quantum-dot tracking reveals altered membrane dynamics of an attention-deficit/hyperactivity-disorder-derived dopamine transporter coding variant[J]. ACS Chemical Neuroscience, 2015, 6(4): 526–534. doi: 10.1021/cn500202c
    [4] LANE L A, QIAN X M, SMITH A M, et al. Physical chemistry of nanomedicine: understanding the complex behaviors of nanoparticles in vivo[J]. Annual Review of Physical Chemistry, 2015, 66: 521–547. doi: 10.1146/annurev-physchem-040513-103718
    [5] CHAUHAN V P, STYLIANOPOULOS T, BOUCHER Y, et al. Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies[J]. Annual Review of Chemical and Biomolecular Engineering, 2011, 2: 281–298. doi: 10.1146/annurev-chembioeng-061010-114300
    [6] WONG I Y, GARDEL M L, REICHMAN D R, et al. Anomalous diffusion probes microstructure dynamics of entangled F-actin networks[J]. Physical Review Letters, 2004, 92(17): 178101. doi: 10.1103/PhysRevLett.92.178101
    [7] HÖFLING F, FRANOSCH T. Anomalous transport in the crowded world of biological cells[J]. Reports on Progress in Physics Physical Society (Great Britain), 2013, 76(4): 046602. doi: 10.1088/0034-4885/76/4/046602
    [8] MOROZOV A. From chaos to order in active fluids[J]. Science, 2017, 355(6331): 1262–1263. doi: 10.1126/science.aam8998
    [9] LIN C P, SCHUSTER M, GUIMARAES S C, et al. Active diffusion and microtubule-based transport oppose myosin forces to position organelles in cells[J]. Nature Communications, 2016, 7: 11814. doi: 10.1038/ncomms11814
    [10] YOUNG E W K, BEEBE D J. Fundamentals of microfluidic cell culture in controlled microenvironments[J]. Chemical Society Reviews, 2010, 39(3): 1036–1048. doi: 10.1039/b909900j
    [11] SMITH J H, HUMPHREY J A C. Interstitial transport and transvascular fluid exchange during infusion into brain and tumor tissue[J]. Microvascular Research, 2007, 73(1): 58–73. doi: 10.1016/j.mvr.2006.07.001
    [12] FANG Z C, DING Y, ZHANG Z C, et al. Digital microfluidic meter-on-chip[J]. Lab on a Chip, 2020, 20(4): 722–733. doi: 10.1039/c9lc00989b
    [13] GROO A C, LAGARCE F. Mucus models to evaluate nanomedicines for diffusion[J]. Drug Discovery Today, 2014, 19(8): 1097–1108. doi: 10.1016/j.drudis.2014.01.011
    [14] DIX J A, VERKMAN A S. Crowding effects on diffusion in solutions and cells[J]. Annual Review of Biophysics, 2008, 37: 247–263. doi: 10.1146/annurev.biophys.37.032807.125824
    [15] BROCHARD WYART F, DE GENNES P G. Viscosity at small scales in polymer melts[J]. The European Physical Journal E, 2000, 1(1): 93–97. doi: 10.1007/s101890050011
    [16] CHENG X, XU X L, RICE S A, et al. Assembly of vorticity-aligned hard-sphere colloidal strings in a simple shear flow[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(1): 63–67. doi: 10.1073/pnas.1118197108
    [17] KHAREL P, ROGNON P. Vortices enhance diffusion in dense granular flows[J]. Physical Review Letters, 2017, 119(17): 178001. doi: 10.1103/physrevlett.119.178001
    [18] CAI Y, SCHWARTZ D K. Mapping the functional tortuosity and spatiotemporal heterogeneity of porous polymer membranes with super-resolution nanoparticle tracking[J]. ACS Applied Materials & Interfaces, 2017, 9(49): 43258–43266. doi: 10.1021/acsami.7b15335
    [19] HE K, BABAYE KHORASANI F, RETTERER S T, et al. Diffusive dynamics of nanoparticles in arrays of nanoposts[J]. ACS Nano, 2013, 7(6): 5122–5130. doi: 10.1021/nn4007303
    [20] KEGEL W K, VAN B A. Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions[J]. Science, 2000, 287(5451): 290–293. doi: 10.1126/science.287.5451.290
    [21] 王九令. 复杂生物介质中纳米药物载体输运的若干力学问题[D]. 北京: 中国科学院大学, 2017.
    [22] MOON B U, ABBASI N, JONES S G, et al. Water-in-water droplets by passive microfluidic flow focusing[J]. Analytical Chemistry, 2016, 88(7): 3982–3989. doi: 10.1021/acs.analchem.6b00225
    [23] 周思佳, 王昊利, 包福兵. 基于单颗粒追踪法研究聚氧化乙烯溶液的微流变特性[J]. 实验流体力学, 2020, 34(2): 89–98. doi: 10.11729/syltlx20190143

    ZHOU S J, WANG H L, BAO F B. Experimental study on microrheological properties of polyethylene oxide solution based on single particle tracking method[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 89–98. doi: 10.11729/syltlx20190143
    [24] 黄艺荣, 郑旭, 胡国庆. 纳米颗粒在复杂生物介质中的反常扩散[J]. 气体物理, 2018, 3(4): 1–12. doi: 10.19527/j.cnki.2096-1642.2018.04.001

    HUANG Y R, ZHENG X, HU G Q. Anomalous diffusion of nanoparticles in complex biological media[J]. Physics of Gases, 2018, 3(4): 1–12. doi: 10.19527/j.cnki.2096-1642.2018.04.001
    [25] SOUZY M, YIN X L, VILLERMAUX E, et al. Super-diffusion in sheared suspensions[J]. Physics of Fluids, 2015, 27(4): 041705. doi: 10.1063/1.4918613[LinkOut
    [26] ORIHARA H, TAKIKAWA Y. Brownian motion in shear flow: direct observation of anomalous diffusion[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2011, 84(6 Pt 1): 061120. doi: 10.1103/PhysRevE.84.061120
    [27] RAIKHER Y L, RUSAKOV V V, PERZYNSKI R. Brownian motion in a viscoelastic medium modelled by a Jeffreys fluid[J]. Soft Matter, 2013, 9(45): 10857. doi: 10.1039/c3sm51956b
    [28] SARMIENTO-GOMEZ E, SANTAMARÍA-HOLEK I, CASTILLO R. Mean-square displacement of particles in slightly interconnected polymer networks[J]. The Journal of Physical Chemistry B, 2014, 118(4): 1146–1158. doi: 10.1021/jp4105344
    [29] ZIA R N. Active and passive microrheology: theory and simulation[J]. Annual Review of Fluid Mechanics, 2018, 50: 371–405. doi: 10.1146/annurev-fluid-122316-044514
    [30] OULD-KADDOUR F, LEVESQUE D. Molecular-dynamics investigation of tracer diffusion in a simple liquid: test of the Stokes-Einstein law[J]. Physical Review E, 2000, 63: 011205. doi: 10.1103/physreve.63.011205
    [31] COGLITORE D, EDWARDSON S P, MACKO P, et al. Transition from fractional to classical Stokes-Einstein behaviour in simple fluids[J]. Royal Society Open Science, 2017, 4(12): 170507. doi: 10.1098/rsos.170507
    [32] KUBO R. The fluctuation-dissipation theorem[J]. Reports on Progress in Physics, 1966, 29(1): 255–284. doi: 10.1088/0034-4885/29/1/306
    [33] TSALLIS C, LEVY S V, SOUZA A M, et al. Statistical-mechanical foundation of the ubiquity of Lévy distributions in Nature[J]. Physical Review Letters, 1995, 75(20): 3589–3593. doi: 10.1103/physrevlett.75.3589
    [34] DANIELSEN S P O, BEECH H K, WANG S, et al. Molecular characterization of polymer networks[J]. Chemical Reviews, 2021, 121(8): 5042–5092. doi: 10.1021/acs.chemrev.0c01304
    [35] METZLER R, JEON J H, CHERSTVY A G, et al. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking[J]. Physical Chemistry Chemical Physics:PCCP, 2014, 16(44): 24128–24164. doi: 10.1039/c4cp03465a
    [36] GHOSH S K, CHERSTVY A G, METZLER R. Non-universal tracer diffusion in crowded media of non-inert obstacles[J]. Physical Chemistry Chemical Physics:PCCP, 2015, 17(3): 1847–1858. doi: 10.1039/c4cp03599b
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  253
  • HTML全文浏览量:  87
  • PDF下载量:  8
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-05-23
  • 修回日期:  2022-07-02
  • 录用日期:  2022-07-07
  • 网络出版日期:  2023-06-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日