Visualization experiment of wave dynamics in pressure oscillation tube
-
摘要: 气波制冷机具有制冷效率高、可带液工作等优点。为深入研究气波制冷机核心部件压力振荡管内部波系运动,设计了一套双开口压力振荡管可视化流场测量平台,利用视场拼接和纹影技术获得气波振荡管内密度梯度场的定量表达,并与二维欧拉方程理论计算结果进行了交叉对比验证,误差为3.2%,证明基于纹影技术追踪管内复杂波系运动的方法不仅直观可视且准确可靠。基于上述方法,对不同压比和转速下的气波振荡管内波系开展了深入实验研究。实验结果表明,增加压比或转速均会提升激波马赫数。压比由1.5增至3.0时,激波强度与膨胀波强度均显著增加,强化了对管口的膨胀过程。转速由800 r/min提升至2400 r/min时,膨胀波波系运动路径逐渐向管口方向弯曲,减缓了膨胀波在管口运动的速度,增加了膨胀波对管口的作用时间。Abstract: Gas Wave Refrigerator(GWR) is a kind of equipment with strong adaptability to complex working conditions. It has the advantages of high refrigeration efficiency, and can work with liquid. The pressure oscillation tube is the core part of GWR. A visual flow field measurement platform was designed to study the wave motion inside the pressure oscillation tube. The flow field splices and the schlieren technique are used to obtain the density gradient field in the tube, and the results are compared with the theoretical calculation of the two-dimensional Euler equation. The deviation between the experiment and the simulation is 3.2%. Based on the above method, experiments with different pressure ratios and rotational speeds were carried out. The experimental results show that the shock Mach number can be increased by increasing the pressure ratio or speed. When the pressure ratio increases from 1.5 to 3.0, the intensity of the shock wave and expansion wave increases significantly. When the rotational speed increases from 800 r/min to 2400 r/min, the motion path of the expansion wave system gradually bends towards the nozzle, which prolongs the time of the expansion wave at the nozzle.
-
Key words:
- pressure oscillating tube /
- wave motion /
- schlieren /
- visual experiment /
- flow field splices
-
表 1 实验参数
Table 1. Experimental parameters
参数名称 参数值 参数名称 参数值 管道长度 600 mm 可视段长度 450 mm 管道截面 12 × 12 mm2 喷嘴截面 32 × 15 mm2 喷嘴压力 150~300 kPa (绝压) 最大压力 110 kPa (绝压) 电机转速 800~2400 r/min 最大流量 0.4 kg/s -
[1] COTTERLAZ-RENNAZ M. Wellhead gas refrigerator field strips condensate[J]. World Oil, 1971, 173(6): 60–61. [2] 刘伟, 胡大鹏. 气波制冷技术研究现状[J]. 制冷, 2002, 21(4): 19–24. doi: 10.3969/j.issn.1005-9180.2002.04.005LIU W, HU D P. The research situation of gas wave refrigeration technology[J]. Refrigeration, 2002, 21(4): 19–24. doi: 10.3969/j.issn.1005-9180.2002.04.005 [3] HANSON R K, DAVIDSON D F. Recent advances in laser absorption and shock tube methods for studies of combustion chemistry[J]. Progress in Energy and Combustion Science, 2014, 44: 103–114. doi: 10.1016/j.pecs.2014.05.001 [4] LIU P Q, WU K H, XU S Y, et al. Influence of non-equilibrium condensation on key parameter of gas wave refrigerator[C] //Proceedings of the 7th International Conference on Informatics, Environment, Energy and Applications. 2018. doi: 10.1145/3208854.3208894 [5] HU D P, LI R F, LIU P Q, et al. The design and influence of port arrangement on an improved wave rotor refrigerator performance[J]. Applied Thermal Engineering, 2016, 107: 207–217. doi: 10.1016/j.applthermaleng.2016.06.168[LinkOut [6] HU D P, YU Y, LIU P Q. Enhancement of refrigeration performance by energy transfer of shock wave[J]. Applied Thermal Engineering, 2018, 130: 309–318. doi: 10.1016/j.applthermaleng.2017.11.040 [7] LIU P Q, LI X, LIU X Y, et al. Investigation of the shock wave formation and intensity in wave rotor[J]. Journal of Energy Resources Technology, 2021, 143(11): 111301. doi: 10.1115/1.4049585 [8] OKAMOTO K, ARAKI M. Shock wave observation in narrow tubes for a parametric study on micro wave rotor design[J]. Journal of Thermal Science, 2008, 17(2): 134–140. doi: 10.1007/s11630-008-0134-6 [9] OKAMOTO K, NAGASHIMA T. Visualization of wave rotor inner flow dynamics[J]. Journal of Propulsion and Power, 2007, 23(2): 292–300. doi: 10.2514/1.18439 [10] KUREC K, PIECHNA J, GUMOWSKI K. Investigations on unsteady flow within a stationary passage of a pressure wave exchanger, by means of PIV measurements and CFD calculations[J]. Applied Thermal Engineering, 2017, 112: 610–620. doi: 10.1016/j.applthermaleng.2016.10.142 [11] OZAWA H. Visualization of unsteady boundary-layer transition on shock-tube wall using highly sensitive fast-response TSP[C]//Proc of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2015: 3658. doi: 10.2514/6.2015-3658 [12] 谢爱民, 部绍清, 罗锦阳. 基于光源拼接的大视场聚焦纹影技术初步研究[J]. 实验流体力学, 2018, 32(6): 68–73. doi: 10.11729/syltlx20180012XIE A M, BU S Q, LUO J Y. Primary study of large-field focusing schlieren technique based on tiled light sources[J]. Journal of Experiments in Fluid Mechanics, 2018, 32(6): 68–73. doi: 10.11729/syltlx20180012 [13] CHAN S N, LIU H X, XING F, et al. Wave rotor design method with three steps including experimental validation[J]. Journal of Engineering for Gas Turbines and Power, 2018, 140(11): 111201. doi: 10.1115/1.4038815 [14] 郑敏, 张涵信. 无波动、无自由参数的耗散差分格式(NND)在喷流计算中的应用[J]. 空气动力学学报, 1989, 7(3): 273–281.ZHENG M, ZHANG H X. Application of non-oscillatory and non-free-parameters disslpative finit difference scheme to the calculation of free-jet flows[J]. Acta Aerodynamica Sinica, 1989, 7(3): 273–281. [15] HARGATHER M J, SETTLES G S. A comparison of three quantitative schlieren techniques[J]. Optics and Lasers in Engineering, 2012, 50(1): 8–17. doi: 10.1016/j.optlaseng.2011.05.012 [16] SKOTAK M, ALAY E, CHANDRA N. On the accurate determination of shock wave time-pressure profile in the experimental models of blast-induced neurotrauma[J]. Frontiers in Neurology, 2018, 9: 52. doi: 10.3389/fneur.2018.00052 [17] 张连玉. 爆炸气体动力学基础[M]. 北京: 北京工业学院出版社, 1987. [18] 于洋. 激波传递能量强化双开口振荡管制冷性能研究[D]. 大连: 大连理工大学, 2018.YU Y. Enhancement of refrigeration performance by shock-wave transmission energy in double-opening oscillating tube[D]. Dalian: Dalian University of Technology, 2018. -