留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

内外流耦合作用下柔性立管振动响应特性研究

高岳 朱红钧 胡洁 许兵

高岳, 朱红钧, 胡洁, 等. 内外流耦合作用下柔性立管振动响应特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20220033
引用本文: 高岳, 朱红钧, 胡洁, 等. 内外流耦合作用下柔性立管振动响应特性研究[J]. 实验流体力学, doi: 10.11729/syltlx20220033
GAO Y, ZHU H J, HU J, et al. Experimental investigation on the flow-induced vibration of a riser subjected to the combination of internal liquid flow and external sheared flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220033
Citation: GAO Y, ZHU H J, HU J, et al. Experimental investigation on the flow-induced vibration of a riser subjected to the combination of internal liquid flow and external sheared flow[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220033

内外流耦合作用下柔性立管振动响应特性研究

doi: 10.11729/syltlx20220033
基金项目: 国家自然科学基金面上项目(51979238);天津大学水利工程仿真与安全国家重点实验室开放课题(HSSE-2005)
详细信息
    作者简介:

    高岳:(1991—),女,山东泰安人,博士,讲师。研究方向:多场多相耦合作用下的海洋管柱振动响应。通信地址:四川省成都市新都区新都大道8号西南石油大学(610500)。E-mail:gaoyue0522@126.com

    通讯作者:

    E-mail:ticky863@126.com

  • 中图分类号: TE58;P751

Experimental investigation on the flow-induced vibration of a riser subjected to the combination of internal liquid flow and external sheared flow

  • 摘要: 海洋柔性立管广泛应用于海洋油气等矿产资源的输送,在内部流体与外部海流的夹击下极易产生复杂的振动响应,一旦发生立管疲劳失效,就会造成严重的环境污染。本文在循环实验水槽中开展了单相内流与非线性剪切外流耦合作用下悬链线型柔性立管的振动响应测试,采用高速摄像非介入测试方法捕捉了悬链线型柔性立管的振动位移。通过改变非线性剪切外流的约化速度(Urm=3.55~44.69)和内流流速(uin=0.674 m/s~1.651 m/s),分析了内流流速对柔性立管振动响应的影响规律,剖析了不同流动工况下平面外振幅、振频的时空响应特性及振动模态的演变。实验结果表明:与纯外流激发的涡激振动相比,内流的存在使柔性立管的振幅增大,且振动模态转换发生在更低的约化速度,随着内流流速的增大相邻模态间发生模态转换的临界约化速度越来越小;在本实验测试工况下,当柔性立管在纯外流作用下发生锁频振动时,振动模态没有发生改变,而在外流涡激振动处于模态过渡区时,内流的输送易使高阶模态在更低的约化速度时出现。
  • 图  1  实验装置示意图

    Figure  1.  Schematic of the experimental set-up

    图  2  不同流速的内流作用下柔性立管的均方根振幅随约化速度的变化

    Figure  2.  The three-dimensional visualization of the root-mean squares (RMS) response amplitude with respect to s/l and the mean reduced velocity at different internal flow velocities

    图  3  不同流速的内流作用下柔性立管的振动主频随约化速度的变化

    Figure  3.  The dominant out-of-plane response frequency versus the reduced velocity

    图  4  不同流速的内流作用下柔性立管各阶振动模态权重随外流约化速度的变化

    Figure  4.  The modal weight variation of flexible riser response versus the reduced velocity at different internal velocities

    图  5  Urm=3.55时内流流速对柔性立管均方根振幅响应的影响

    Figure  5.  The influence of internal velocity on the response amplitude of flexible riser at Urm=3.55

    图  6  Urm=3.55时不同内流流速作用下柔性立管展向的频率分布及典型位置的时频变化

    Figure  6.  The power spectra density distribution along the flexible riser span and wavelet time-frequency contours at typical positions of flexible at Urm=3.55 coupled with different internal velocities

    图  7  Urm=5.47时内流流速对柔性立管均方根振幅响应的影响

    Figure  7.  The influence of internal velocity on the response amplitude of flexible riser at Urm=5.47

    图  8  Urm=5.47时不同内流流速作用下典型位置的时频变化

    Figure  8.  Wavelet time-frequency contours at typical positions of flexible riser at Urm=5.47 coupled with different internal velocities

    图  9  Urm=5.47时不同内流流速作用下柔性立管展向的频率分布

    Figure  9.  The power spectra density distribution along the flexible riser span at Urm=5.47 coupled with different internal velocities

    表  1  立管的参数

    Table  1.   Parameters of the flexible riser

    参数数值单位
    柔性立管的长度,l 100 cm
    液面高度,H 65 cm
    水平跨长,l0 69 cm
    外径,D 8 mm
    壁厚,δ 1 mm
    长径比,l/D 125 /
    弹性模量,E 7.15 × 106 N/m2
    单位长度质量,m 0.0256 kg/m
    质量比,m* 1.073 /
    下载: 导出CSV
  • [1] HUERA-HUARTE F J, BEARMAN P W, CHAPLIN J R. On the force distribution along the axis of a flexible circular cylinder undergoing multi-mode vortex-induced vibrations[J]. Journal of Fluids and Structures, 2006, 22(6-7): 897–903. doi: 10.1016/j.jfluidstructs.2006.04.014
    [2] CHAPLIN J R, BEARMAN P W, HUERA HUARTE F J, et al. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current[J]. Journal of Fluids and Structures, 2005, 21(1): 3–24. doi: 10.1016/j.jfluidstructs.2005.04.010
    [3] LEE L, ALLEN D. Vibration frequency and lock-in bandwidth of tensioned, flexible cylinders experiencing vortex shedding[J]. Journal of Fluids and Structures, 2010, 26(4): 602–610. doi: 10.1016/j.jfluidstructs.2010.02.002
    [4] BOURGUET R, KARNIADAKIS G E, TRIANTAFYLLOU M S. Vortex-induced vibrations of a long flexible cylinder in shear flow[J]. Journal of Fluid Mechanics, 2011, 677: 342–382. doi: 10.1017/jfm.2011.90
    [5] BOURGUET R, KARNIADAKIS G E, TRIANTAFYLLOU M S. Distributed lock-in drives broadband vortex-induced vibrations of a long flexible cylinder in shear flow[J]. Journal of Fluid Mechanics, 2013, 717: 361–375. doi: 10.1017/jfm.2012.576
    [6] BOURGUET R, KARNIADAKIS G E, TRIANTAFYLLOU M S. Multi-frequency vortex-induced vibrations of a long tensioned beam in linear and exponential shear flows[J]. Journal of Fluids and Structures, 2013, 41: 33–42. doi: 10.1016/j.jfluidstructs.2012.07.007
    [7] BOURGUET R. Vortex-induced vibrations of a flexible cylinder at subcritical Reynolds number[J]. Journal of Fluid Mechanics, 2020, 902: R3. doi: 10.1017/jfm.2020.676
    [8] LIN K, WANG J S. Numerical simulation of vortex-induced vibration of long flexible risers using a SDVM-FEM coupled method[J]. Ocean Engineering, 2019, 172: 468–486. doi: 10.1016/j.oceaneng.2018.12.006
    [9] LUCOR D, IMAS L, KARNIADAKIS G E. Vortex dislocations and force distribution of long flexible cylinders subjected to sheared flows[J]. Journal of Fluids and Structures, 2001, 15(3-4): 641–650. doi: 10.1006/jfls.2000.0366
    [10] SARPKAYA T. Vortex-induced oscillations: a selective review[J]. Journal of Applied Mechanics, 1979, 46(2): 241–258. doi: 10.1115/1.3424537
    [11] VANDIVER J K, ALLEN D, LI L. The occurrence of lock-in under highly sheared conditions[J]. Journal of Fluids and Structures, 1996, 10(5): 555–561. doi: 10.1006/jfls.1996.0037
    [12] GRIFFIN O M, RAMBERG S E. Some recent studies of vortex shedding with application to marine tubulars and risers[J]. Journal of Energy Resources Technology, 1982, 104(1): 2–13. doi: 10.1115/1.3230377
    [13] VANDIVER J K. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents[J]. Journal of Fluids and Structures, 1993, 7(5): 423–455. doi: 10.1006/jfls.1993.1028
    [14] BOURGUET R, LUCOR D, TRIANTAFYLLOU M S. Mono- and multi-frequency vortex-induced vibrations of a long tensioned beam in shear flow[J]. Journal of Fluids and Structures, 2012, 32: 52–64. doi: 10.1016/j.jfluidstructs.2011.05.008
    [15] NEWMAN D J, KARNIADAKIS G E. A direct numerical simulation study of flow past a freely vibrating cable[J]. Journal of Fluid Mechanics, 1997, 344: 95–136. doi: 10.1017/s002211209700582x
    [16] GAO Y, ZHANG Z Z, ZOU L, et al. Effect of boundary condition and aspect ratio on vortex-induced vibration response of a circular cylinder[J]. Ocean Engineering, 2019, 188: 106244. doi: 10.1016/j.oceaneng.2019.106244
    [17] DUAN J L, ZHOU J F, YOU Y X, et al. Effect of internal flow on vortex-induced vibration dynamics of a flexible mining riser in external shear current[J]. Marine Structures, 2021, 80: 103094. doi: 10.1016/j.marstruc.2021.103094
    [18] GUO H Y, LOU M, DONG X L. Experimental study on vortex-induced vibration of risers transporting fluid[C]//Proc of the Sixteenth International Offshore and Polar Engineering Conference. 2006.
    [19] GUO H Y, WANG S Q, WU L, et al. Dynamic characteristics of marine risers conveying fluid[J]. China Ocean Engineering, 2000, 14(2): 153–160.
    [20] MENG S, ZHANG X Q, CHE C D, et al. Cross-flow vortex-induced vibration of a flexible riser transporting an internal flow from subcritical to supercritical[J]. Ocean Engineering, 2017, 139: 74–84. doi: 10.1016/j.oceaneng.2017.04.039
    [21] CHEN Z S, KIM W J, XIONG C B. Effect of upward internal flow on dynamics of riser model subject to shear current[J]. China Ocean Engineering, 2012, 26(1): 95–108. doi: 10.1007/s13344-012-0007-3
    [22] GUO H Y, LOU M. Effect of internal flow on vortex-induced vibration of risers[J]. Journal of Fluids and Structures, 2008, 24(4): 496–504. doi: 10.1016/j.jfluidstructs.2007.10.002
    [23] ZHU H J, HU J, GAO Y, et al. Spatial-temporal mode transition in vortex-induced vibration of catenary flexible riser[J]. Journal of Fluids and Structures, 2021, 102: 103234. doi: 10.1016/j.jfluidstructs.2021.103234
    [24] ZHU H J, GAO Y, ZHAO H L. Experimental investigation of slug flow-induced vibration of a flexible riser[J]. Ocean Engineering, 2019, 189: 106370. doi: 10.1016/j.oceaneng.2019.106370
    [25] ZHU H J, GAO Y, ZHAO H L. Coupling vibration response of a curved flexible riser under the combination of internal slug flow and external shear current[J]. Journal of Fluids and Structures, 2019, 91: 102724. doi: 10.1016/j.jfluidstructs.2019.102724
    [26] ZHU H J, LIN P Z, GAO Y. Vortex-induced vibration and mode transition of a curved flexible free-hanging cylinder in exponential shear flows[J]. Journal of Fluids and Structures, 2019, 84: 56–76. doi: 10.1016/j.jfluidstructs.2018.10.009
    [27] FAN D X, WANG Z C, TRIANTAFYLLOU M S, et al. Mapping the properties of the vortex-induced vibrations of flexible cylinders in uniform oncoming flow[J]. Journal of Fluid Mechanics, 2019, 881: 815–858. doi: 10.1017/jfm.2019.738
  • 加载中
图(10) / 表(1)
计量
  • 文章访问数:  188
  • HTML全文浏览量:  82
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-30
  • 修回日期:  2022-05-07
  • 录用日期:  2022-05-10
  • 网络出版日期:  2023-06-06

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日