留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

低速风洞进气道连续扫描试验方法研究

徐彬彬 刘庭申 巫朝君 孙福振 王学 陈袁

徐彬彬,刘庭申,巫朝君,等. 低速风洞进气道连续扫描试验方法研究[J]. 实验流体力学,2022,36(X):1-10 doi: 10.11729/syltlx20220032
引用本文: 徐彬彬,刘庭申,巫朝君,等. 低速风洞进气道连续扫描试验方法研究[J]. 实验流体力学,2022,36(X):1-10 doi: 10.11729/syltlx20220032
XU B B,LIU T S,WU C J,et al. Research of the continuous scan test method for inlet in low wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-10. doi: 10.11729/syltlx20220032
Citation: XU B B,LIU T S,WU C J,et al. Research of the continuous scan test method for inlet in low wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-10. doi: 10.11729/syltlx20220032

低速风洞进气道连续扫描试验方法研究

doi: 10.11729/syltlx20220032
基金项目: 中国空气动力研究与发展中心风雷青年创新基金(PJD20190236)
详细信息
    作者简介:

    徐彬彬:(1988—),男,湖南祁东人,博士,助理研究员。研究方向:低速风洞试验技术,辐射流体力学,流体不稳定性。通信地址:四川省绵阳市二环路南段6号13信箱02分箱(621000)。E-mail:xubb2010@163.com

    通讯作者:

    E-mail:648294953@qq.com

  • 中图分类号: V211.7

Research of the continuous scan test method for inlet in low wind tunnel

  • 摘要: 在中国空气动力研究与发展中心FL–13风洞对进气道连续扫描低速风洞试验方法进行了初步研究。提出了进气道连续扫描试验方法和流程,给出了连续扫描试验数据处理方法,并在FL–13风洞开展了进气道常规试验方法与连续扫描试验方法的对比试验。两种方法试验结果一致性较好,所获得的进气道出口截面气动特性参数差值远小于国军标重复性精度要求。试验结果验证了进气道连续扫描试验方法的有效性和可行性。与进气道常规试验方法相比,连续扫描试验方法能够大幅度提高试验效率,同时还能够获得更多的有效试验数据。
  • 图  1  测量段示意图

    Figure  1.  The schematic of measurement section

    图  2  稳态周向畸变指数计算说明图

    Figure  2.  The schematic for calculating the circumference distort index

    图  3  常规试验方法与连续扫描试验方法结果对比(α=−6°、0°,Ma=0.2,β=15°)

    Figure  3.  Comparison of the test results for conventional method and continuous scan method(α=−6°and 0°, Ma=0.2, β=15°)

    图  4  常规试验方法与连续扫描试验方法结果对比(α=6°、12°,Ma=0.2,β=15°)

    Figure  4.  Comparison of the test results for conventional method and continuous scan method(α=6°and 12°, Ma=0.2, β=15°)

    图  5  进发匹配点进气道性能参数随迎角变化曲线(Ma=0.2,β=15°)

    Figure  5.  The matching value of inlet performance varies with angle of attack(Ma=0.2, β=15°)

    图  6  常规试验方法与连续扫描试验方法结果对比(α=−6°、0°,Ma=0.2,β=0°)

    Figure  6.  Comparison of the test results obtained by conventional method and continuous scan method(α=−6°and 0°, Ma=0.2, β=0°)

    图  7  常规试验方法与连续扫描试验方法结果对比(α=6°、12°,Ma=0.2,β=0°)

    Figure  7.  Comparison of the test results obtained by conventional method and continuous scan method(α=6°and 12°, Ma=0.2, β=0°)

    图  8  进发匹配点进气道性能参数随迎角变化曲线(Ma=0.2,β=0°)

    Figure  8.  The matching value of inlet performance varies with angle of attack(Ma=0.2, β=0°)

    表  1  大车状态进发匹配点处连续扫描与常规方法试验结果差值(Ma=0.2,β=15°)

    Table  1.   The difference value of matching value under cart condition for conventional method and continuous scan method(Ma=0.2, β=15°)

    α/(°)φm差值σm差值Δσθm差值Tum差值Wm差值
    −60.00020.00020.0001−0.0004−0.0003
    00.00030.00030.00030.00010.0004
    60.00020.00020.0001−0.0002−0.0002
    120.00010.0001−0.0003−0.0002−0.0005
    国军标重复性精度要求0.010.0050.0050.005
    下载: 导出CSV

    表  2  慢车状态进发匹配点处连续扫描与常规方法试验结果差值(Ma=0.2,β=15°)

    Table  2.   The difference value of matching value under idling condition for conventional method and continuous scan method(Ma=0.2, β=15°)

    α/(°)φm差值σm差值Δσθm差值Tum差值Wm差值
    −6−0.0001−0.0002000
    0−0.0001−0.0002000.0001
    600−0.00010−0.0001
    1200−0.00020−0.0002
    国军标重复性精度要求0.010.0050.0050.005
    下载: 导出CSV

    表  3  大车状态进发匹配点处连续扫描与常规方法试验结果差值(Ma=0.2,β=0°)

    Table  3.   The difference value of matching value under cart condition for conventional method and continuous scan method(Ma=0.2, β=0°)

    ω/(°·s−1α/(°)φm差值σm差值Δσθm差值Tum差值Wm差值
    0.5−6−0.0001−0.00010.00010.00010.0002
    0.2−60.00020.00020.00000.00030.0002
    0.500.00010.00010.0001−0.0002−0.0001
    0.20−0.00010.0000−0.0001−0.0001−0.0002
    0.560.00010.0001−0.00020.0000−0.0002
    0.260.00030.0004−0.00020.00030.0001
    0.5120.00040.0005−0.0003−0.0001−0.0005
    0.2120.00070.0008−0.0004−0.0002−0.0005
    国军标精度要求0.010.0050.0050.005
    下载: 导出CSV

    表  4  慢车状态进发匹配点处连续扫描与常规方法试验结果差值(Ma=0.2,β=0°)

    Table  4.   The difference value of matching value under idling condition for conventional method and continuous scan method(Ma=0.2, β=0°)

    ω/(°·s−1α/(°)φm差值σm差值Δσθm差值Tum差值Wm差值
    0.5−60.00010.00020−0.0001−0.0001
    0.2−60.00010.0002−0.0004−0.0002−0.0005
    0.50−0.0002−0.0006−0.00120.0004−0.0008
    0.2000−0.00050.0002−0.0004
    0.5600−0.00010−0.0001
    0.2600.00010−0.0001−0.0001
    0.5120−0.0001−0.0002−0.0001−0.0003
    0.2120.00000.0000−0.0001−0.0001−0.0001
    国军标精度要求0.010.0050.0050.005
    下载: 导出CSV
  • [1] 鲍国华. 风洞特种实验[M]. 西安: 西北工业大学出版社, 1990.
    [2] 李周复. 风洞特种试验技术[M]. 北京: 航空工业出版社, 2010.
    [3] 姜健,于芳芳,赵海刚,等. 进气道/发动机相容性评价体系的完善与发展[J]. 科学技术与工程,2009,9(21):6474-6483. doi: 10.3969/j.issn.1671-1815.2009.21.041

    JIANG J,YU F F,ZHAO H G,et al. Perfection and development of engine/intake compatibility evaluate criterion[J]. Science Technology and Engineering,2009,9(21):6474-6483. doi: 10.3969/j.issn.1671-1815.2009.21.041
    [4] 中国人民解放军总装备部军事训练教材编辑工作委员会. 低速风洞试验[M]. 北京: 国防工业出版社, 2002.
    [5] 高静,郝卫东,闫永昌,秦凤波,李斐. 进气道低速特性试验技术研究[J]. 流体力学实验与测量,2004,18(1):38-42. doi: 10.3969/j.issn.1672-9897.2004.01.009

    GAO J,HAO W D,YAN Y C,et al. Experimental investigation on low speed characteristics of inlet[J]. Experiments and Measurements in Fluid Mechanics,2004,18(1):38-42. doi: 10.3969/j.issn.1672-9897.2004.01.009
    [6] 巫朝君,孔鹏,王勋年,等. 基于张线尾撑的进气道低速风洞试验技术研究[J]. 实验流体力学,2012,26(2):86-89. doi: 10.3969/j.issn.1672-9897.2012.02.019

    WU C J,KONG P,WANG X N,et al. The investigation of the inlet test technology based on wire sting support in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2012,26(2):86-89. doi: 10.3969/j.issn.1672-9897.2012.02.019
    [7] 荣祥森,李方吉,赵清,等. 1.2 m风洞进气道分布式流量节流机构系统设计[J]. 自动化仪表,2021,42(2):24-27. doi: 10.16086/j.cnki.issn1000-0380.2020040036

    RONG X S,LI F J,ZHAO Q,et al. Design of the distributed flow regulation device system for 1.2 m wind tunnel inlet test[J]. Process Automation Instrumentation,2021,42(2):24-27. doi: 10.16086/j.cnki.issn1000-0380.2020040036
    [8] 王磊,刘凯礼,陈勇,等. 民用飞机进气道低速大迎角性能风洞实验和数值计算分析[J]. 推进技术,2021,42(6):1235-1244. doi: 10.13675/j.cnki.tjjs.200262

    WANG L,LIU K L,CHEN Y,et al. Wind tunnel test and numerical study on civil aircraft inlet performance under low speed and high angle of attack condition[J]. Journal of Propulsion Technology,2021,42(6):1235-1244. doi: 10.13675/j.cnki.tjjs.200262
    [9] 高颖,赵海刚,暴鑫,等. 飞机进气道流场品质测量耙风洞校准试验研究[J]. 科学技术与工程,2015,15(18):235-238. doi: 10.3969/j.issn.1671-1815.2015.18.041

    GAO Y,ZHAO H G,BAO X,et al. Measurement and characteristic analysis of inlet distortion rake of the airplane inlet in wind tunnel[J]. Science Technology and Engineering,2015,15(18):235-238. doi: 10.3969/j.issn.1671-1815.2015.18.041
    [10] 李方吉,赵清,樊建超,等. 进气道风洞试验分布式流量调节技术研究与试验验证[J]. 实验流体力学,2020,34(4):74-80. doi: 10.11729/syltlx20190022

    LI F J,ZHAO Q,FAN J C,et al. Technology research and test verification of distributed flow regulator for inlet test in wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2020,34(4):74-80. doi: 10.11729/syltlx20190022
    [11] 巫朝君,聂博文,孔鹏,等. 战斗机进气道非定常性能试验技术[J]. 实验流体力学,2017,31(2):98-103. doi: 10.11729/syltlx20160027

    WU C J,NIE B W,KONG P,et al. Test technology on unsteady characteristics of inlet flow during fighter plane maneuvers[J]. Journal of Experiments in Fluid Mechanics,2017,31(2):98-103. doi: 10.11729/syltlx20160027
    [12] 樊建超,华杰,于昆龙,等. FL–24风洞埋入式进气道试验技术[J]. 实验流体力学,2008,22(1):92-94. doi: 10.3969/j.issn.1672-9897.2008.01.020

    FAN J C,HUA J,YU K L,et al. A test technique for submerged inlet model in FL–24 wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2008,22(1):92-94. doi: 10.3969/j.issn.1672-9897.2008.01.020
    [13] 程松,刘晓晖,温渝昌. 大攻角连续扫描试验技术在某型号飞机上的应用[J]. 流体力学实验与测量,1999,13(4):27-31.

    CHENG S,LIU X H,WEN Y C. An application of the continuous scan technique to the high angle of attack fighter model test[J]. Experiments and Measurements in Fluid Mechanics,1999,13(4):27-31.
    [14] 张俊. 工程实用的飞行器低速风洞连续扫描试验技术研究[D]. 长沙: 国防科学技术大学, 2007.

    ZHANG J. Investigation of the continuous scan techniques in engineer to aircraft in low speed wind tunnel[D]. Changsha: National University of Defense Technology, 2007.
    [15] 顾艺,岑飞,温渝昌,等. 基于非接触测量技术的低速风洞连续扫描试验技术研究[J]. 实验流体力学,2013,27(5):98-104. doi: 10.3969/j.issn.1672-9897.2013.05.019

    GU Y,CEN F,WEN Y C,et al. Research about continuous scanning test technique based on non-contact measurement technique in low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2013,27(5):98-104. doi: 10.3969/j.issn.1672-9897.2013.05.019
    [16] 唐乔乔,张卫国,刘忠华,等. 8 m × 6 m风洞特大迎角机构连续扫描试验技术研究与应用[J]. 实验流体力学,2012,26(2):81-85. doi: 10.3969/j.issn.1672-9897.2012.02.018

    TANG Q Q,ZHANG W G,LIU Z H,et al. Research and application of the continuous scan technique to the high angle of attack equipment in 8m × 6m wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2012,26(2):81-85. doi: 10.3969/j.issn.1672-9897.2012.02.018
    [17] 孙海生,祝明红,黄勇,等. Φ3.2 m风洞战斗机大迎角试验关键技术研究[J]. 实验流体力学,2011,25(3):50-55. doi: 10.3969/j.issn.1672-9897.2011.03.012

    SUN H S,ZHU M H,HUANG Y,et al. Key technique for high angle of attack test of fighter aircraft in Φ3.2 m low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2011,25(3):50-55. doi: 10.3969/j.issn.1672-9897.2011.03.012
    [18] 魏志,谢艳,吴军强,等. 连续变迎角测力试验技术在大型暂冲式跨声速风洞中的应用[J]. 实验流体力学,2011,25(4):99-102. doi: 10.3969/j.issn.1672-9897.2011.04.019

    WEI Z,XIE Y,WU J Q,et al. Application of continuous sweeping force measuring technology in large intermittent transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2011,25(4):99-102. doi: 10.3969/j.issn.1672-9897.2011.04.019
    [19] 孙海生,张晖,汤更生,等. 8 m × 6 m风洞特大迎角试验设备研制[J]. 实验流体力学,2009,23(1):70-73. doi: 10.3969/j.issn.1672-9897.2009.01.016

    SUN H S,ZHANG H,TANG G S,et al. The development of high angle of attack test equipment in the 8 m × 6 m low speed wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2009,23(1):70-73. doi: 10.3969/j.issn.1672-9897.2009.01.016
    [20] 周平,陈天毅,王帆,等. 8 m × 6 m风洞特大迎角机构控制系统研制[J]. 实验流体力学,2011,25(3):78-81,96. doi: 10.3969/j.issn.1672-9897.2011.03.017

    ZHOU P,CHEN T Y,WANG F,et al. The control system design of the high attack angle mechanism for the 8 m × 6 m wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2011,25(3):78-81,96. doi: 10.3969/j.issn.1672-9897.2011.03.017
  • 加载中
图(8) / 表(4)
计量
  • 文章访问数:  173
  • HTML全文浏览量:  149
  • PDF下载量:  18
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-20
  • 修回日期:  2022-05-24
  • 录用日期:  2022-06-20
  • 网络出版日期:  2022-10-09

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日