留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Schmidt–Boelter热流传感器的改进和性能测评

朱涛 杨凯 朱新新 徐洋 王辉

朱涛,杨凯,朱新新,等. Schmidt–Boelter热流传感器的改进和性能测评[J]. 实验流体力学,2022,36(X):1-7 doi: 10.11729/syltlx20220029
引用本文: 朱涛,杨凯,朱新新,等. Schmidt–Boelter热流传感器的改进和性能测评[J]. 实验流体力学,2022,36(X):1-7 doi: 10.11729/syltlx20220029
ZHU T,YANG K,ZHU X X,et al. Improvement, performance test and evaluation for Schmidt–Boelter gage[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-7. doi: 10.11729/syltlx20220029
Citation: ZHU T,YANG K,ZHU X X,et al. Improvement, performance test and evaluation for Schmidt–Boelter gage[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-7. doi: 10.11729/syltlx20220029

Schmidt–Boelter热流传感器的改进和性能测评

doi: 10.11729/syltlx20220029
详细信息
    作者简介:

    朱涛:(1973—),男,重庆万州人,博士,高级工程师。研究方向:高超声速风洞试验技术。通信地址:四川省绵阳市二环路南段6号15信箱(621000)。E-mail:zhutao00011@sina.com

    通讯作者:

    E-mail:zhuxinxin@cardc.cn

  • 中图分类号: V441

Improvement, performance test and evaluation for Schmidt–Boelter gage

  • 摘要: 为满足常规高超声速风洞连续变迎角试验动态热流测量需求,改进了一种小尺寸Schmidt–Boelter热流传感器。采用热流标定装置对其进行了静态校准和动态测试,得到改进后传感器的灵敏度系数为57.67 μV·kW−1·m2,响应时间约26 ms,截止频率26 Hz,可覆盖1~130 kW/m2的热流范围。基于特征响应时间常数,建立了变迎角速度与最大测量误差的定量关系;参照某阶梯变迎角试验测得的热流数据,对该传感器在一定误差范围内能够满足的最大连续变迎角速度进行了评估。
  • 图  1  热阻层

    Figure  1.  Thermal resistance layer

    图  2  改进后的S–B热流传感器

    Figure  2.  S–B sensors improved

    图  3  不同热流下的电压输出

    Figure  3.  Voltage output at different heat flux values

    图  4  不同热流下的长时间测试曲线

    Figure  4.  Long-time test curve at different heat flux values

    图  5  不同热流值下的响应时间曲线

    Figure  5.  Response time curve at different heat flux values

    图  6  不同频率下的波形对比

    Figure  6.  Waveform comparison at different frequencies

    图  7  频响特性曲线

    Figure  7.  Amplitude-frequency characteristic curve

    图  8  不同迎角下的热流

    Figure  8.  Heat flux values at different attack angles

  • [1] 汪丰麟,朱启超,张杰. 俄罗斯高超声速武器发展简析[J]. 国防科技,2021,42(3):57-64. doi: 10.13943/j.issn1671-4547.2021.03.08

    WANG F L,ZHU Q C,ZHANG J. The development history of Russian hypersonic weapons[J]. National Defense Technology,2021,42(3):57-64. doi: 10.13943/j.issn1671-4547.2021.03.08
    [2] 王培美,陈俊峰. 美军针对高超声速武器的反导预警能力发展态势分析[J]. 国防科技,2021,42(5):63-68. doi: 10.13943/j.issn1671-4547.2021.05.11

    WANG P M,CHEN J F. US missile defense early-warning capabilities and trends study in consideration of hypersonic weapons defense[J]. National Defense Technology,2021,42(5):63-68. doi: 10.13943/j.issn1671-4547.2021.05.11
    [3] 梁捷,秦开宇,陈力. 类X-43A高超声速飞行器机体/推进一体化气动设计分析和地面试验问题评述[J]. 载人航天,2021,27(4):412-421. doi: 10.16329/j.cnki.zrht.2021.04.002

    LIANG J,QIN K Y,CHEN L. A review of aerodynamic design and ground test for integrated airframe/propulsion hypersonic vehicles like X-43A[J]. Manned Spaceflight,2021,27(4):412-421. doi: 10.16329/j.cnki.zrht.2021.04.002
    [4] 王铁进,施岳定,邓志强,等. 常规高超声速风洞的节能方案研究[J]. 实验流体力学,2016,30(6):71-75,104. doi: 10.11729/syltlx20150133

    WANG T J,SHI Y D,DENG Z Q,et al. Preliminary study on energy-saving layout for conventional hypersonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2016,30(6):71-75,104. doi: 10.11729/syltlx20150133
    [5] 陈磊,钟凯,朱涛,等. 高超声速风洞试验段环境飞行器颤振的视觉三维测量[J]. 光学 精密工程,2021,29(8):1811-1821. doi: 10.37188/OPE.2021.0169

    CHEN L,ZHONG K,ZHU T,et al. Visual three-dimensional measurement of aircraft flutter in hypersonic wind tunnel tests[J]. Optics and Precision Engineering,2021,29(8):1811-1821. doi: 10.37188/OPE.2021.0169
    [6] 黄昊宇,黄辉,凌忠伟,等. 某式某型高超声速风洞连续变攻角测力试验测试系统研制及关键技术研究[J]. 自动化与仪器仪表,2021(2):33-37. doi: 10.14016/j.cnki.1001-9227.2021.02.033

    HUANG H Y,HUANG H,LING Z W,et al. Measurement system development and key techniques research on the continuous variable angle of attack force test in Ф0.5m hypersonic wind tunnel[J]. Automation & Instrumentation,2021(2):33-37. doi: 10.14016/j.cnki.1001-9227.2021.02.033
    [7] 黄辉,黄昊宇,凌忠伟,等. Φ0.5米高超声速风洞连续变攻角测力试验数据处理方法研究[J]. 计算机测量与控制,2019,27(8):281-285. doi: 10.16526/j.cnki.11-4762/tp.2019.08.059

    HUANG H,HUANG H Y,LING Z W,et al. Research on data processing method of continuous variable angle of attack force test in Φ 0.5 meter hypersonic wind tunnel[J]. Computer Measurement & Control,2019,27(8):281-285. doi: 10.16526/j.cnki.11-4762/tp.2019.08.059
    [8] 韩曙光,贾广森,文帅,等. 磷光热图技术在常规高超声速风洞热环境实验中的应用[J]. 气体物理,2017,2(4):56-63. doi: 10.19527/j.cnki.2096-1642.2017.04.006

    HAN S G,JIA G S,WEN S,et al. Heat transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility[J]. Physics of Gases,2017,2(4):56-63. doi: 10.19527/j.cnki.2096-1642.2017.04.006
    [9] 毕志献,韩曙光,伍超华,等. 磷光热图测热技术研究[J]. 实验流体力学,2013,27(3):87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017

    BI Z X,HAN S G,WU C H,et al. Phosphor thermography study in Gun tunnel[J]. Journal of Experiments in Fluid Mechanics,2013,27(3):87-92. doi: 10.3969/j.issn.1672-9897.2013.03.017
    [10] 张仕忠,李进平,张晓源,等. 一种新型瞬态量热计的研制[J]. 中国科学:技术科学,2018,48(5):558-564. doi: 10.1360/N092017-00245

    ZHANG S Z,LI J P,ZHANG X Y,et al. Development of a novel transient calorimeter[J]. Scientia Sinica(Technologica),2018,48(5):558-564. doi: 10.1360/N092017-00245
    [11] 曾磊,桂业伟,贺立新,等. 镀层式同轴热电偶数据处理方法研究[J]. 工程热物理学报,2009,30(4):661-664. doi: 10.3321/j.issn:0253-231X.2009.04.032

    ZENG L,GUI Y W,HE L X,et al. Study on data processing methods for coaxial-thermal-couple heat-flux sensor[J]. Journal of Engineering Thermophysics,2009,30(4):661-664. doi: 10.3321/j.issn:0253-231X.2009.04.032
    [12] MATTHEWS R K, NUTT K W, WANNENWETSCH G D, et al. Developments in aerothermal test techniques at the AEDC supersonic-hypersonic wind tunnels[C]//Proc of the 20th Thermophysics Conference. 1985: 1003. doi: 10.2514/6.1985-1003
    [13] NAKOS J T. Description of heat flux measurement methods used in hydrocarbon and propellant fuel fires at Sandia[R]. SAND2010-7062 , 2010. doi: 10.2172/1005030
    [14] KIDD C, SCOTT W. New techniques for transient heat-transfer measurement in hypersonic flow at the AEDC[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999: 823. doi: 10.2514/6.1999-823
    [15] KIDD C T, ADAMS J C Jr. Development of a heat-flux sensor for commonality of measurement in AEDC hypersonic wind tunnels[C]//Proc of the 21st Aerodynamic Measurement Technology and Ground Testing Conference. 2000: 2514. doi: 10.2514/6.2000-2514
    [16] HOFFIE A F. Convection calibration of Schmidt-Boelter heat flux gages in shear and stagnation air flow[D]. Virginia: Mechanical Engineering, Virginia Polytechnic Institute and State University, 2006.
    [17] VATELL CORPORATION. Certificate of calibration of Schmidt-Boelter heat flux transducer[Z]. Serial Number: 0118, Date Calibrated: 10-09-2013.
    [18] 罗浩,彭同江. 一种多级式热电堆型微量热流传感器的设计与制备[J]. 西南科技大学学报,2014,29(1):55-59. doi: 10.3969/j.issn.1671-8755.2014.01.012

    LUO H,PENG T J. Design and preparation of a multi-stage thermopile-type micro-heat flow flux sensor[J]. Journal of Southwest University of Science and Technology,2014,29(1):55-59. doi: 10.3969/j.issn.1671-8755.2014.01.012
    [19] 储小刚. 热电堆式热流传感器的设计与实验研究[D]. 南京: 南京理工大学, 2016.
    [20] 朱新新,朱涛,杨凯,等. 小尺寸Schmidt-Boelter热流传感器的研制[J]. 实验流体力学,2021,35(4):106-111. doi: 10.11729/syltlx20200065

    ZHU X X,ZHU T,YANG K,et al. Development of small size Schmidt-Boelter heat flux sensor[J]. Journal of Experiments in Fluid Mechanics,2021,35(4):106-111. doi: 10.11729/syltlx20200065
    [21] MURTHY A V,TSAI B K,SAUNDERS R D. Radiative calibration of heat-flux sensors at NIST: facilities and techniques[J]. Journal of Research of the National Institute of Standards and Technology,2000,105(2):293-305. doi: 10.6028/jres.105.033
    [22] 朱新新,王辉,杨庆涛,等. 弧光灯热流标定系统的光学设计[J]. 光学学报,2016,36(11):234-240. doi: 10.3788/AOS201636.1122001

    ZHU X X,WANG H,YANG Q T,et al. Optical design of arc lamp heat flux calibration system[J]. Acta Optica Sinica,2016,36(11):234-240. doi: 10.3788/AOS201636.1122001
    [23] 杨凯,杨庆涛,朱新新,等. 一种薄膜热电堆热流传感器灵敏度系数的实验研究[J]. 宇航计测技术,2018,38(3):67-72. doi: 10.12060/j.issn.1000-7202.2018.03.11

    YANG K,YANG Q T,ZHU X X,et al. Calibration tests on a new thin-film thermopile heat-flux sensor[J]. Journal of Astronautic Metrology and Measurement,2018,38(3):67-72. doi: 10.12060/j.issn.1000-7202.2018.03.11
    [24] WANG H,YANG Q T,ZHU X X,et al. Inverse estimation of heat flux using linear artificial neural networks[J]. International Journal of Thermal Sciences,2018,132:478-485. doi: 10.1016/j.ijthermalsci.2018.04.034
    [25] 王辉, 朱新新, 彭海波, 等. 一种高频响热流传感器标定装置: CN112556890A[P]. 2021-03-26.

    WANG H, ZHU X X, PENG H B, et al. Calibration device for high-frequency response heat flow sensor: CN112556890A[P]. 2021-03-26.
  • 加载中
图(8)
计量
  • 文章访问数:  347
  • HTML全文浏览量:  177
  • PDF下载量:  40
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-04-08
  • 修回日期:  2022-05-09
  • 录用日期:  2022-05-17
  • 网络出版日期:  2022-10-18

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日