留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动条件下小球藻生长特性的实验研究

张婷 冯爱国 姜楠 刘春江

张婷, 冯爱国, 姜楠, 等. 流动条件下小球藻生长特性的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220028
引用本文: 张婷, 冯爱国, 姜楠, 等. 流动条件下小球藻生长特性的实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220028
ZHANG T, FENG A G, JIANG N, et al. Experimental investigation on growth profiles of microalgae with different flow conditions in photo-bioreactors[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220028
Citation: ZHANG T, FENG A G, JIANG N, et al. Experimental investigation on growth profiles of microalgae with different flow conditions in photo-bioreactors[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220028

流动条件下小球藻生长特性的实验研究

doi: 10.11729/syltlx20220028
基金项目: 国家自然科学基金项目(42007385);辽宁省自然科学基金项目(2023-MS-316);辽宁工程技术大学博士启动基金项目(21-1144)
详细信息
    作者简介:

    张婷:(1980—),女,天津人,教授,研究生导师。研究方向:环境模型、区域污染扩散与健康风险。通讯地址:辽宁省阜新市细河区玉龙路 88号,辽宁工程技术大学土木工程学院(123000)。E-mail:ting_zhang_lntu@163.com

    通讯作者:

    E-mail:ting_zhang_lntu@163.com

  • 中图分类号: O352;X714

Experimental investigation on growth profiles of microalgae with different flow conditions in photo-bioreactors

  • 摘要: 高密度藻培对藻类资源高效利用十分重要。为解决流动条件对微藻生长作用机理不明的问题,本文借助高时间分辨率粒子图像测速技术(Time Resolved Particle Image Velocimeter, TR-PIV),对比研究光生物反应器(Photobioreactors, PBR)的水流速度分布特征和涡流效应,获得了藻液流速、涡量、湍流动能(TKE)云图,测量了小球藻的生长速率和类胡萝卜素含量。实验结果表明:高轴向速度、高径向速度、高涡量(0.015 s−1Ω≥0.025 s−1)、高TKE(k≤0.2 m2/s2)的流动会加速小球藻细胞的分裂、生长及高附加值产物产生;流场可视化方法是PBR设计与优化的一种有效工具。
  • 图  1  微藻光生物反应装置实验台

    Figure  1.  The test platform of microalgae PBR

    图  2  微藻光生物反应装置

    Figure  2.  Microalgae photosynthesis biological reactor

    图  3  PIV系统拍摄的YZ截面藻液瞬时流速

    Figure  3.  PIV captured velocity and streamline contours of algal liquid

    图  4  PIV系统拍摄的不同曝气流量的藻液平均流速云图

    Figure  4.  PIV captured averaged velocity contours of algal liquid

    图  5  对比PBR藻液脉动速度图

    Figure  5.  UY-axis and VZ-axis fluctuating velocities of algal liquids

    图  6  PIV系统拍摄的PBR藻液轴向速度和径向速度

    Figure  6.  VZ-axis and UY-axis velocity profiles of algal liquids

    图  7  PIV系统拍摄的藻液时均速度矢量云图

    Figure  7.  PIV captured velocity vector contours of algal liquid

    图  8  PIV系统拍摄的典型时刻的藻液涡量分布图

    Figure  8.  PIV captured vorticity contours of algal liquid

    图  9  PIV系统拍摄的典型时刻的藻液时均涡量

    Figure  9.  PIV-based vorticity magnitudes of algal liquid

    图  10  PIV系统拍摄的时均湍流动能云图

    Figure  10.  PIV captured turbulent kinetic energy contours of algal liquid

    图  11  小球藻生长速率

    Figure  11.  Growth bars of Chlorella vuguris in PBR

    图  12  流动影响参数a与藻生长、生物质产率的关联图

    Figure  12.  Relationship between a, algae growth, biomass productivity

    表  1  小球藻培养结果

    Table  1.   Chlorella vuguris cultivation data

    培养时间/天I/A
    1# PBR2# PBR3# PBR
    00.1790.1790.179
    20.1690.3530.303
    40.2021.1240.962
    60.2452.3322.240
    70.2253.2203.036
    80.2334.9634.473
    100.3426.0835.684
    下载: 导出CSV
  • [1] 李岩溪. 浅层跑道池培养微藻的驱动和混合强化[D]. 北京: 中国科学院大学, 2014.

    LI Y X. Driving and mixing enhancement of microalgae culture in shallow runway pool[D]. Beijing: University of Chinese Academy of Sciences, 2014.
    [2] WANG X X, ZHANG T Y, DAO G H, et al. Assessment and mechanisms of microalgae growth inhibition by phosphonates: effects of intrinsic toxicity and complexation[J]. Water Research, 2020, 186: 116333. doi: 10.1016/j.watres.2020.116333
    [3] 张文毓. 生物柴油的现状与进展[J]. 生物技术世界, 2008, 5(4): 25–27.
    [4] 黄鹏, 田腾飞, 张文安, 等. 水动力条件对水体中藻类生长的抑制作用[J]. 环境工程, 2018, 36(12): 64–69.

    HUANG P, TIAN T F, ZHANG W A, et al. Inhibition of algae growth in water by hydroynamic force[J]. Environmental Engineering, 2018, 36(12): 64–69.
    [5] 吴晓辉, 李其军. 水动力条件对藻类影响的研究进展[J]. 生态环境学报, 2010, 19(7): 1732–1738. doi: 10.3969/j.issn.1674-5906.2010.07.039

    WU X H, LI Q J. Reviews of influences from hydrodynamic conditions on algae[J]. Ecology and Environment, 2010, 19(7): 1732–1738. doi: 10.3969/j.issn.1674-5906.2010.07.039
    [6] 杨宗波. 闪光反应器流场优化促进微藻固定燃煤烟气CO2研究[D]. 杭州: 浙江大学, .

    YANG Z B. Optimization of flow field in flash reactor promotes CO2 fixation of coal-fired flue gas by microalgae. [D]. Hangzhou: Zhejiang University.
    [7] SANGEETHA T, LI I T, LAN T H, et al. A fluid dynamics perspective on the flow dependent performance of honey comb microbial fuel cells[J]. Energy, 2021, 214: 118928. doi: 10.1016/j.energy.2020.118928
    [8] SEBASTIÁN M, GASOL J M. Visualization is crucial for understanding microbial processes in the ocean[J]. Philosophical Transactions of the Royal Society B:Biological Sciences, 2019, 374(1786): 20190083. doi: 10.1098/rstb.2019.0083
    [9] WONG Y K, HO K C, TSANG Y F, et al. Cultivation of Chlorella vulgaris in column photobioreactor for biomass production and lipid accumulation[J]. Water Environment Research:a Research Publication of the Water Environment Federation, 2016, 88(1): 40–46. doi: 10.2175/106143015X14362865227553
    [10] CHOWDURY K H, NAHAR N, DEB U K. The growth factors involved in microalgae cultivation for biofuel production: a review[J]. Computational Water, Energy, and Environmental Engineering, 2020, 9(4): 185–215. doi: 10.4236/cweee.2020.94012
    [11] WONG Y K , HO K C, LAI P K, et al. PBRs for Cultivation of Microalgae: Assessment of Design and Performance[C]//Proc of ICBUAB 2013. 2013.
    [12] DETRELL G. Chlorella vulgaris photobioreactor for oxygen and food production on a moon base—potential and challenges[J]. Frontiers in Astronomy and Space Sciences, 2021, 8: 700579. doi: 10.3389/fspas.2021.700579
    [13] SFORZA E, ENZO M, BERTUCCO A. Design of microalgal biomass production in a continuous photobioreactor: an integrated experimental and modeling approach[J]. Chemical Engineering Research and Design, 2014, 92(6): 1153–1162. doi: 10.1016/j.cherd.2013.08.017
    [14] ASLANBAY GULER B, DENIZ I, DEMIREL Z, et al. Computational fluid dynamics modelling of stirred tank photobioreactor for Haematococcus pluvialis production: Hydrodynamics and mixing conditions[J]. Algal Research, 2020, 47: 101854. doi: 10.1016/j.algal.2020.101854
    [15] BERTUCCO A, BERALDI M, SFORZA E. Continuous microalgal cultivation in a laboratory-scale photobioreactor under seasonal day-night irradiation: experiments and simulation[J]. Bioprocess and Biosystems Engineering, 2014, 37(8): 1535–1542. doi: 10.1007/s00449-014-1125-5
    [16] HADIYANTO H, ELMORE S, VAN GERVEN T, et al. Hydrodynamic evaluations in high rate algae pond (HRAP) design[J]. Chemical Engineering Journal, 2013, 217: 231–239. doi: 10.1016/j.cej.2012.12.015
    [17] HUANG J, XI B D, XU Q J, et al. Experiment study of the effects of hydrodynamic disturbance on the interaction between the cyanobacterial growth and the nutrients[J]. Journal of Hydrodynamics, 2016, 28(3): 411–422. doi: 10.1016/s1001-6058(16)60644-3
    [18] YANG Z F, DEL NINNO M, WEN Z Y, et al. An experimental investigation on the multiphase flows and turbulent mixing in a flat-panel photobioreactor for algae cultivation[J]. Journal of Applied Phycology, 2014, 26(5): 2097–2107. doi: 10.1007/s10811-014-0239-0
    [19] SCHRIMPF M, ESTEBAN J, WARMELING H, et al. Taylor-couettereactor: principles, design, and applications[J]. AIChE Journal, 2021, 67(5). doi: 10.1002/aic.17228
    [20] 董亮, 曾涛, 刘少北, 等. 生物倍增反应器气泡流态特性分析[J]. 水利水运工程学报, 2017(4): 67–75.

    DONG L, ZENG T, LIU S B, et al. PIV measurement and POD analysis of bubble flow characteristics in bio-doubling reactor[J]. Hydro-Science and Engineering, 2017(4): 67–75.
    [21] 黄娜, 陈思晔, 齐瀚实. 短期连续剪切对光生物反应器内海带配子体细胞生长及其恢复能力的影响[J]. 生物工程学报, 2007, 23(5): 935–940. doi: 10.3321/j.issn:1000-3061.2007.05.031

    HUANG N, CHEN S Y, QI H. Effects of short-term continuous shear stress on cells growth and recovery of laminaria japonica gametophytic cells in photobioreactor[J]. Chinese Journal of Biotechnology, 2007, 23(5): 935–940. doi: 10.3321/j.issn:1000-3061.2007.05.031
    [22] BAZDAR E, ROSHANDEL R, YAGHMAEI S, et al. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell[J]. Bioresource Technology, 2018, 261: 350–360. doi: 10.1016/j.biortech.2018.04.026
    [23] BITOG J P P, LEE I B, OH H M, et al. Optimised hydrodynamic parameters for the design of photobioreactors using computational fluid dynamics and experimental validation[J]. Biosystems Engineering, 2014, 122: 42–61. doi: 10.1016/j.biosystemseng.2014.03.006
    [24] 齐祥明, 崔海龙. 基于CFD数值模拟的平板式微藻光生物反应器比较[J]. 农业工程学报, 2015, 31(13): 215–221.

    QI X M, CUI H L. Comparison of flat photo-bioreactors for micro-algae culture based on CFD numerical simulation[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(13): 215–221.
    [25] HUANG J K, KANG S F, WAN M X, et al. Numerical and experimental study on the performance of flat-plate photobioreactors with different inner structures for microalgae cultivation[J]. Journal of Applied Phycology, 2015, 27(1): 49–58. doi: 10.1007/s10811-014-0281-y
    [26] MICHELS M H A, VAN DER GOOT A J, NORSKER N H, et al. Effects of shear stress on the microalgae Chaetoceros muelleri[J]. Bioprocess and Biosystems Engineering, 2010, 33(8): 921–927. doi: 10.1007/s00449-010-0415-9
    [27] PUHALES F S, DEMARCO G, MARTINS L G N, et al. Estimates of turbulent kinetic energy dissipation rate for a stratified flow in a wind tunnel[J]. Physica A:Statistical Mechanics and Its Applications, 2015, 431: 175–187. doi: 10.1016/j.physa.2015.03.008
    [28] ARAJI M T, SHAHID I. Symbiosis optimization of building envelopes and micro-algae photobioreactors[J]. Journal of Building Engineering, 2018, 18: 58–65. doi: 10.1016/j.jobe.2018.02.008
    [29] SCHEUFELE F B, LARISSA HINTERHOLZ C, ZAHARIEVA M M, et al. Complex mathematical analysis of photobioreactor system[J]. Engineering in Life Sciences, 2019, 19(12): 844–859. doi: 10.1002/elsc.201800044
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  77
  • HTML全文浏览量:  133
  • PDF下载量:  16
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-14
  • 修回日期:  2022-05-08
  • 录用日期:  2022-06-14
  • 网络出版日期:  2023-07-03

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日