留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

轴流压缩机低雷诺数气动性能试验研究

雷鹏飞 周恩民 胡运华

雷鹏飞,周恩民,胡运华. 轴流压缩机低雷诺数气动性能试验研究[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20220026
引用本文: 雷鹏飞,周恩民,胡运华. 轴流压缩机低雷诺数气动性能试验研究[J]. 实验流体力学,2022,36(X):1-8 doi: 10.11729/syltlx20220026
LEI P F,ZHOU E M,HU Y H. Experiment of aerodynamic performance of axial compressor at low Reynolds number condition[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20220026
Citation: LEI P F,ZHOU E M,HU Y H. Experiment of aerodynamic performance of axial compressor at low Reynolds number condition[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-8. doi: 10.11729/syltlx20220026

轴流压缩机低雷诺数气动性能试验研究

doi: 10.11729/syltlx20220026
详细信息
    作者简介:

    雷鹏飞:(1984—),男,河南汝州人,博士,工程师。研究方向:连续式风洞轴流压缩机气动设计及相关研究。通信地址:四川省涪城区绵阳市二环路南段6号(621000)。E-mail:pflei_compressor@163.com

    通讯作者:

    E-mail:zemcompressor@163.com

  • 中图分类号: TH4;V211.74

Experiment of aerodynamic performance of axial compressor at low Reynolds number condition

  • 摘要: 基于0.6 m连续式跨声速风洞的低密度环境运行能力,对主压缩机在不同总压下的气动性能进行了试验研究,详细分析了低密度环境下雷诺数对轴流压缩机气动性能的影响规律。试验中压缩机进口总压低至3 kPa左右,研究结果表明:随着雷诺数降低,压缩机增压能力和等熵效率均大幅下降,而喘振裕度受雷诺数的影响较小,负压工况轴系机械损失逐渐成为压缩机主要损失,对压缩机效率的影响较大。通过对试验数据的拟合得到了压缩机效率和压比随雷诺数变化的经验公式,可为轴流压缩机低雷诺数工况下的气动设计及数值方法研究提供数据支撑。
  • 图  1  0.6 m连续式风洞轮廓图

    Figure  1.  Scheme of 0.6 m continuous transonic wind tunnel

    图  2  测量系统示意图

    Figure  2.  Scheme of measuring system

    图  3  折合转速3520 r/min时不同总压下的压缩机流量–压比曲线

    Figure  3.  Influence of total pressure on compressor pressure ratio at 3520 r/min

    图  4  折合转速3520 r/min时不同总压下的压缩机流量–效率曲线

    Figure  4.  Influence of total pressure on compressor isentropic efficiency at 3520 r/min

    图  5  压缩机等熵效率随雷诺数的变化

    Figure  5.  Influence of Re on isentropic efficiency

    图  6  雷诺数对喘振压比的影响

    Figure  6.  Influence of Re on surge pressure ratio

    图  7  不同转速下雷诺数对压缩机升压能力的影响

    Figure  7.  Influence of Re on compressor capability of pressurization at different rotating speeds

    图  8  雷诺数对叶片表面压力分布的影响

    Figure  8.  Influence of Re on pressure distribution of compressor blade

    图  9  雷诺数对喘振边界的影响

    Figure  9.  Influence of Re on surge boundary

  • [1] LEWIS R I. Turbomachinery performance analysis[M]. Arnold, London: Butterworth-Heinemann, 1996. doi: 10.1016/B978-0-340-63191-1.X5000-4
    [2] ECKERT B. Überblick über Forschungsergebnisse des FKFS-Stuttgart an axial durchströmten Verdichtern[R]. Report 171 of the Lilienthal Society, 1943: 34-49.
    [3] CARTER A D S, MOSS C E, GREEN, G R, ANNEAR G G. The effect of Reynolds number on the performance of a single-stage compressor[R]. A. R. C. Technical Report R. &M. No. 3184, 1960.
    [4] BULLOCK R O. Analysis of Reynolds number and scale effects on performance of turbomachinery[J]. Journal of Engineering for Power,1964,86(3):247-256. doi: 10.1115/1.3677587
    [5] WASSELL A B. Reynolds number effects in axial compressors[J]. Journal of Engineering for Gas Turbines & Power,1968,90(2):149-156. doi: 10.1115/1.3609154
    [6] McKENZIE A B. Axial flow fans and compressors: aerodynamic design and performance[M]. Farnham, Surrey, United Kingdom: Ashgate Publishing. 1997.
    [7] HANLY K, GRIMES R, WALSH P. The effects of Reynolds number on the aerodynamic performance of geometrically similar fans[C]//Proceedings of ASME 2008 Fluids Engineering Division Summer Meeting Collocated With the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. 2009: 183-191. doi: 10.1115/FEDSM2008-55149
    [8] 郭捷,王咏梅,杜辉,等. 低雷诺数条件对涡扇发动机风扇/压气机性能和稳定性影响的试验研究[J]. 航空发动机,2004,30(4):4-6. doi: 10.3969/j.issn.1672-3147.2004.04.002

    GUO J,WANG Y M,DU H,et al. Experimental investigation of low Reynolds number effects on fan/compressor performance and stability for turbofans[J]. Aeroengine,2004,30(4):4-6. doi: 10.3969/j.issn.1672-3147.2004.04.002
    [9] 赵胜丰,卢新根,朱俊强. 雷诺数对跨声速压气机转子内部流动失稳触发机理的影响[J]. 推进技术,2013,34(1):25-30. doi: 10.13675/j.cnki.tjjs.2013.01.008

    ZHAO S F,LU X G,ZHU J Q. Effects of Reynolds number on the instability inception mechanism of a transonic compressor[J]. Journal of Propulsion Technology,2013,34(1):25-30. doi: 10.13675/j.cnki.tjjs.2013.01.008
    [10] 周恩民,程松,刘恺,等. 0.6 m连续式风洞压缩机系统的调试研究[J]. 流体机械,2015,43(11):10-15. doi: 10.3969/j.issn.1005-0329.2015.11.003

    ZHOU E M,CHENG S,LIU K,et al. Study of the compressor system’s debugging in 0.6 m continuous wind tunnel[J]. Fluid Machinery,2015,43(11):10-15. doi: 10.3969/j.issn.1005-0329.2015.11.003
    [11] 熊波,程松,罗新福,等. 低雷诺数效应对0.6 m连续式风洞性能影响[J]. 实验流体力学,2017,31(1):87-92,99. doi: 10.11729/syltlx20160079

    XIONG B,CHENG S,LUO X F,et al. Effects of low Reynolds number on performance of 0.6 m continuous wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2017,31(1):87-92,99. doi: 10.11729/syltlx20160079
    [12] 向宏辉,侯宽新,刘宽,等. 基于扭矩测量的轴流压气机效率评定方法研究[J]. 燃气涡轮试验与研究,2021,34(4):1-6. doi: 10.3969/j.issn.1672-2620.2021.04.001

    XIANG H H,HOU K X,LIU K,et al. Efficiency evaluation method of axial compressor based on torque measurement[J]. Gas Turbine Experiment and Research,2021,34(4):1-6. doi: 10.3969/j.issn.1672-2620.2021.04.001
    [13] 廖达雄,陈吉明,郑娟,等. 0.6 m连续式跨声速风洞总体性能[J]. 实验流体力学,2018,32(6):88-93. doi: 10.11729/syltlx20170086

    LIAO D X,CHEN J M,ZHENG J,et al. General performance of 0.6 m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2018,32(6):88-93. doi: 10.11729/syltlx20170086
    [14] 裴海涛,陈吉明,陈钦,等. 0.6 m连续式跨声速风洞真空系统设计及性能分析[J]. 真空科学与技术学报,2021,41(11):1087-1093. doi: 10.13922/j.cnki.cjvst.202104004

    PEI H T,CHEN J M,CHEN Q,et al. Design and performance analysis of vacuum system in the 0.6 m continuous transonic wind tunnel[J]. Chinese Journal of Vacuum Science and Technology,2021,41(11):1087-1093. doi: 10.13922/j.cnki.cjvst.202104004
    [15] 周恩民,程松,许靖,等. 0.6 m连续式跨声速风洞AV90 –3轴流压缩机喘振边界测试研究[J]. 实验流体力学,2014,28(5):81-85. doi: 10.11729/syltlx20130083

    ZHOU E M,CHENG S,XU J,et al. Surge margin test and research of AV90–3 axial compressor in 0.6 m continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2014,28(5):81-85. doi: 10.11729/syltlx20130083
    [16] 雷剑宇,廖明夫,杨伸记. 预测风机喘振边界的新方法[J]. 风机技术,2005,47(4):52-53,57. doi: 10.3969/j.issn.1006-8155.2005.04.019

    LEI J Y,LIAO M F,YANG S J. New method of predicting surge lines of fan[J]. Compressor Blower & Fan Technology,2005,47(4):52-53,57. doi: 10.3969/j.issn.1006-8155.2005.04.019
    [17] GUNN J A, MARTINDALE W R, WAGNER D W. Performance evaluation of a transonic wind tunnel compressor[C]//Proc of the 28th Joint Propulsion Conference and Exhibit. 1992: 3927. doi: 10.2514/6.1992-3927
    [18] 陈天君. 浅谈轴流压缩机和离心压缩机的喘振试验[J]. 化学工业与工程技术,2007,28(S1):120-122.

    CHEN T J. Surge test of axial compressor and centrifugal compressor[J]. Journal of Chemical Industry & Engineering,2007,28(S1):120-122.
    [19] 雷鹏飞,周恩民,胡运华. 连续式跨声速风洞与压缩机的气动性能匹配[J]. 航空动力学报,2021,36(2):233-239. doi: 10.13224/j.cnki.jasp.2021.02.002

    LEI P F,ZHOU E M,HU Y H. Aerodynamic performance matching of continuous transonic wind tunnel and its driving compressor[J]. Journal of Aerospace Power,2021,36(2):233-239. doi: 10.13224/j.cnki.jasp.2021.02.002
  • 加载中
图(9)
计量
  • 文章访问数:  232
  • HTML全文浏览量:  119
  • PDF下载量:  14
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-03-22
  • 修回日期:  2022-05-18
  • 录用日期:  2022-05-30
  • 网络出版日期:  2022-10-26

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日