留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

不同飞行工况下双模态发动机流动及燃烧特性

何粲 肖保国 邢建文 易淼荣

何粲,肖保国,邢建文,等. 不同飞行工况下双模态发动机流动及燃烧特性[J]. 实验流体力学,2022,36(4):20-29 doi: 10.11729/syltlx20220019
引用本文: 何粲,肖保国,邢建文,等. 不同飞行工况下双模态发动机流动及燃烧特性[J]. 实验流体力学,2022,36(4):20-29 doi: 10.11729/syltlx20220019
HE C,XIAO B G,XING J W,et al. Flow and combustion characteristics of dual-mode scramjet under different flight conditions[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):20-29. doi: 10.11729/syltlx20220019
Citation: HE C,XIAO B G,XING J W,et al. Flow and combustion characteristics of dual-mode scramjet under different flight conditions[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):20-29. doi: 10.11729/syltlx20220019

不同飞行工况下双模态发动机流动及燃烧特性

doi: 10.11729/syltlx20220019
详细信息
    作者简介:

    何粲:(1992—),女,安徽安庆人,硕士研究生,助理研究员。研究方向:吸气式高超声速推进技术。通信地址:四川省绵阳市涪城区二环路南段6号16信箱2分信箱(621000)。E-mail:highmapaper@163.com

    通讯作者:

    E-mail:xbgxl@163.com

  • 中图分类号: V235.21

Flow and combustion characteristics of dual-mode scramjet under different flight conditions

  • 摘要: 为研究煤油燃料矩形截面双模态超燃冲压发动机在不同飞行工况下的流动及燃烧特征,在通过直连式试验验证计算方法的准确性后,对6个不同马赫数及当量比工况进行了三维定常数值模拟,得出了发动机壁面压力、一维质量平均马赫数沿流向的分布规律,分析了各工况下流场中波系结构、释热变化率等特征。研究结果表明:不同工况下发动机明显工作于两类不同的燃烧模态。当发动机处于预燃激波串前传至注油位以前的亚燃模态时,凹槽段波系相对较弱;随着激波串的前移,隔离段中形成明显的分离旋涡结构将燃料卷至上游,部分燃烧在注油位之前已完成;在燃烧室内,分离主要发生于凹槽内部,燃烧释热集中于第一凹槽头部。当发动机处于激波串未前传的超燃模态时,凹槽段波系相对更强,流动参数波动更大,燃烧在注油位以后进行,燃烧室内分离旋涡在流向跨度大,形成从第一凹槽前缘至第二凹槽处的连续流动分离;分离旋涡有助于燃烧向下游传播,因此释热沿流向分布更均匀、更分散。在过渡段诱导流动分离,促使燃烧室内形成大流向跨度的分离旋涡可能有助于燃烧向下游传播,实现分布式释热,避免释热过于集中导致激波串前传。
  • 图  1  直连式发动机构型

    Figure  1.  Direct connect scramjet configuration

    图  2  计算采用的网格

    Figure  2.  Numerical simulation mesh topology

    图  3  直连式试验模型安装图

    Figure  3.  Installation of direct-connected test model

    图  4  试验与计算所得壁面压力对比

    Figure  4.  Comparison between calculation and experiment of wall pressure

    图  5  不同工况下壁面压力沿程分布

    Figure  5.  Upper wall pressure distributions for different cases

    图  6  不同工况下一维质量平均马赫数沿程分布

    Figure  6.  One-dimensional mass average Mach number for different cases

    图  7  不同工况的对称面马赫数云图

    Figure  7.  Centerline planes of Mach number and the shock system for different cases

    图  8  不同工况下流道的静温分布

    Figure  8.  Distributions of temperature in the flowpath for different cases

    图  9  不同工况下流道的二氧化碳分布

    Figure  9.  Distributions of CO2 for different cases

    图  10  释热模型[14]

    Figure  10.  Heat release model[14]

    图  11  不同工况下释热量沿程分布

    Figure  11.  The heat release distributions along the flow direction for different cases

    图  12  不同状态下释热变化率沿程分布

    Figure  12.  The heat release rate distributions along the flow direction for different cases

    图  13  不同工况下发动机表面油流及静压分布

    Figure  13.  Surface oil flows overlaid with static pressure for different cases

    表  1  计算状态及来流参数

    Table  1.   Research Cases and inflow conditions

    工况飞行马赫数当量比隔离段入口参数
    马赫数静压/kPa静温/K
    Case 15.51.02.5772.92680.14
    Case 25.60.92.6172.21688.28
    Case 35.70.82.6771.24694.88
    Case 45.80.72.7369.91699.11
    Case 55.90.62.7769.23708.58
    Case 66.00.52.8768.01702.35
    下载: 导出CSV
  • [1] 邓帆,尘军,谢峰,等. 基于超燃冲压发动机的HIFiRE项目飞行试验研究进展[J]. 航空动力学报,2018,33(3):683-695. doi: 10.13224/j.cnki.jasp.2018.03.022

    DENG F,CHEN J,XIE F,et al. Research progress on flight tests of HIFiRE project based on scramjet[J]. Journal of Aerospace Power,2018,33(3):683-695. doi: 10.13224/j.cnki.jasp.2018.03.022
    [2] FOTIA M L. Mechanics of combustion mode transition in a direct-connect ramjet-scramjet experiment[J]. Journal of Propulsion and Power,2014,31(1):69-78. doi: 10.2514/1.B35171
    [3] 浮强,宋文艳,石德永,等. 来流总温对双模态燃烧室模态转换边界的影响[J]. 航空动力学报,2019,34(5):1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018

    FU Q,SONG W Y,SHI D Y,et al. Effects of incoming flow total temperature on mode transition boundary in dual mode scramjet combustor[J]. Journal of Aerospace Power,2019,34(5):1119-1126. doi: 10.13224/j.cnki.jasp.2019.05.018
    [4] XIAO B G,XING J W,TIAN Y,et al. Experimental and numerical investigations of combustion mode transition in a direct-connect scramjet combustor[J]. Aerospace Science and Technology,2015,46:331-338. doi: 10.1016/j.ast.2015.08.001
    [5] XIAO B G,HE C,XING J W,et al. Experimental and numerical investigations of freejet and direct-connect dual-mode scramjet[J]. Aerospace Science and Technology,2018,75:297-303. doi: 10.1016/j.ast.2018.02.004
    [6] GOODWIN G B, JOHNSON R F, KESSLER D, et al. Premixed ethylene-air combustion in a dual-mode scramjet cavity combustor with a turbulent inflow[C]//Proc of the AIAA Propulsion and Energy 2019 Forum. 2019. doi: 10.2514/6.2019-4270
    [7] 晏至辉,肖保国,何粲,等. 煤油燃料超燃发动机燃烧室温度测量与计算分析[J]. 航空动力学报,2019,34(3):521-528. doi: 10.13224/j.cnki.jasp.2019.03.002

    YAN Z H,XIAO B G,HE C,et al. Temperature measurement and calculation analysis in a kerosene-fueled scramjet combustor[J]. Journal of Aerospace Power,2019,34(3):521-528. doi: 10.13224/j.cnki.jasp.2019.03.002
    [8] 连欢,顾洪斌,周芮旭,等. 超燃冲压发动机模态转换及推力突变实验研究[J]. 实验流体力学,2021,35(1):97-108. doi: 10.11729/syltlx20200069

    LIAN H,GU H B,ZHOU R X,et al. Investigation of mode transition and thrust performance in transient acceleration and deceleration experiments[J]. Journal of Experiments in Fluid Mechanics,2021,35(1):97-108. doi: 10.11729/syltlx20200069
    [9] 车庆丰,齐新华,涂晓波,等. 基于10 kHz高频OH-PLIF的标模发动机燃烧室测量试验[J]. 实验流体力学,2021,35(4):112. doi: 10.11729/syltlx20210088

    CHE Q F,QI X H,TU X B,et al. 10 kHz OH-PLIF imaging measurement of a scramjet combustor[J]. Journal of Experiments in Fluid Mechanics,2021,35(4):112. doi: 10.11729/syltlx20210088
    [10] YENTSCH R J,GAITONDE D V. Numerical investigation of dual-mode operation in a rectangular scramjet flowpath[J]. Journal of Propulsion and Power,2014,30(2):474-489. doi: 10.2514/1.B34994
    [11] YENTSCH R J,GAITONDE D V. Unsteady three-dimensional mode transition phenomena in a scramjet flowpath[J]. Journal of Propulsion and Power,2014,31(1):104-122. doi: 10.2514/1.B35205
    [12] YENTSCH R J, GAITONDE D V. Comparison of mode-transition phenomena in axisymmetric and rectangular scramjet flowpaths[C]//Proc of the 52nd Aerospace Sciences Meeting. AIAA. doi: 10.2514/6.2014-0625
    [13] KOUCHI T,MASUYA G,MITANI T,et al. Mechanism and control of combustion-mode transition in a scramjet engine[J]. Journal of Propulsion and Power,2012,28(1):106-112. doi: 10.2514/1.B34172
    [14] TIAN Y,XIAO B G,ZHANG S P,et al. Experimental and computational study on combustion performance of a kerosene fueled dual-mode scramjet engine[J]. Aerospace Science and Technology,2015,46:451-458. doi: 10.1016/j.ast.2015.09.002
    [15] 林旭阳,金捷,王方,等. 壁温对氢燃料超燃燃烧室流动特性的影响研究[J]. 推进技术,2020,41(5):1097-1102. doi: 10.13675/j.cnki.tjjs.190358

    LIN X Y,JIN J,WANG F,et al. Effects of wall temperature on flow characteristics of hydrogen fuel scramjet combustor[J]. Journal of Propulsion Technology,2020,41(5):1097-1102. doi: 10.13675/j.cnki.tjjs.190358
    [16] 何粲,邢建文,肖保国,等. 矩形截面超燃发动机不同燃烧模态下的流场特征[J]. 实验流体力学,2018,32(4):12-19. doi: 10.11729/syltlx20180022

    HE C,XING J W,XIAO B G,et al. Investigation on flow field characteristics of a rectangular scramjet in different combustion modes[J]. Journal of Experiments in Fluid Mechanics,2018,32(4):12-19. doi: 10.11729/syltlx20180022
    [17] 杨顺华. 碳氢燃料超燃冲压发动机数值研究[D]. 绵阳: 中国空气动力研究与发展中心, 2006.

    YANG S H. Numerical study of hydrocarbon fuel scramjet engine[D]. Mianyang: China Aerodynamics Research and Development Center, 2006.
    [18] 何粲,邢建文,肖保国,等. 反压对隔离段激波串结构的影响[J]. 航空动力学报,2016,31(5):1242-1251. doi: 10.13224/j.cnki.jasp.2016.05.028

    HE C,XING J W,XIAO B G,et al. Influence of back pressure on shock train structure in isolator[J]. Journal of Aerospace Power,2016,31(5):1242-1251. doi: 10.13224/j.cnki.jasp.2016.05.028
    [19] 赵慧勇. 超燃冲压整体发动机并行数值研究[D]. 绵阳: 中国空气动力研究与发展中心, 2005.

    ZHAO H Y. Parallel numerical research on scramjet integral engine[D]. Mianyang: China Aerodynamics Research and Development Center, 2005.
    [20] HE C, XING J W, XIAO B G, et al. Investigation on Flow field characteristics of an ethylene fueled scramjet in different combustion modes[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017. doi: 10.2514/6.2017-2303
    [21] KOK J C. Resolving the dependence on freestream values for the k-omega turbulence model[J]. AIAA Journal,2000,38:1292-1295. doi: 10.2514/3.14547
    [22] LE J L, YANG S H, LIU W X, et al. Massively parallel simulations of kerosene-fueled model scramjet[C]//Proc of the AIAA/CIRA 13th International Space Planes and Hypersonics Systems and Technologies Conference. 2012. doi: 10.2514/6.2005-3318
    [23] FAN C J, Modern Flow Visualization[M]. Beijing: National Defence Industry Press, 2002: 22-37.
    [24] MURRAY T,DAVID J P. Topology of three-dimensional separated flows[J]. Journal of Propulsion and Power,2014,30(2):474-489.
  • 加载中
图(13) / 表(1)
计量
  • 文章访问数:  583
  • HTML全文浏览量:  226
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-21
  • 修回日期:  2022-03-29
  • 录用日期:  2022-04-24
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-09-02

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日