留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

微结构超疏水壁面湍流边界层减阻机理的TRPIV实验研究

刘朝阳 王鑫蔚 王轩 李彪辉 王宇飞 姜楠

刘朝阳, 王鑫蔚, 王轩, 等. 微结构超疏水壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220016
引用本文: 刘朝阳, 王鑫蔚, 王轩, 等. 微结构超疏水壁面湍流边界层减阻机理的TRPIV实验研究[J]. 实验流体力学, doi: 10.11729/syltlx20220016
LIU Z Y, WANG X W, WANG X, et al. Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220016
Citation: LIU Z Y, WANG X W, WANG X, et al. Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure[J]. Journal of Experiments in Fluid Mechanics, doi: 10.11729/syltlx20220016

微结构超疏水壁面湍流边界层减阻机理的TRPIV实验研究

doi: 10.11729/syltlx20220016
基金项目: 国家自然科学基金项目(11732010、11972251、11872272、12172242);工业信息化部高技术船舶项目([2019]360)
详细信息
    作者简介:

    刘朝阳:(1997—),男,河北任丘人,硕士研究生。研究方向:微结构超疏水壁面湍流边界层减阻机理的TRPIV实验研究。通信地址:天津市津南区雅观路135号天津大学北洋园校区机械工程学院力学系36教学楼412室(300354)。E-mail:1364099953@qq.com

    通讯作者:

    E-mail:nanj@tju.edu.cn

  • 中图分类号: O357.5

Experimental study of the mechanism of drag reduction in turbulent boundary layers on the superhydrophobic structured wall with microstructure

  • 摘要: 对超疏水微沟槽和微凸柱面湍流边界层的减阻机理进行了实验研究。使用高时间分辨率粒子图像测速仪(TRPIV),测量了亲水壁面、超疏水微沟槽壁面和超疏水微凸柱壁面湍流边界层内的瞬时速度场,对比分析了3种壁面的壁面摩擦切应力,发现超疏水壁面都产生了减阻效果,但超疏水微沟槽壁面的减阻率(13.8%)要大于超疏水微凸柱壁面(10.2%)。通过对比分析湍流边界层内3种壁面对应的平均速度剖面、湍流脉动强度和雷诺切应力剖面,证实流体在超疏水壁面具有滑移速度,且在$15 < {y^ + } < 100$区域的同一法向高度上,亲水壁面、超疏水微沟槽及超疏水微凸柱壁面对应的流向湍流脉动强度依次减弱;同时在$30 < {y^ + } < 80$区域的同一法向高度上,超疏水微凸柱壁面、亲水壁面和超疏水微沟槽壁面对应的法向湍流脉动强度依次减弱。在整个法向高度上,亲水壁面、超疏水微凸柱壁面和超疏水微沟槽壁面的雷诺切应力的最大值依次减小。以${\Lambda _{{\text{ci}}}}$准则识别出的顺向涡为条件进行条件采样和相位平均,并分别与亲水壁面对比,发现在${y^ + } \approx 63$附近,超疏水微沟槽壁面展向涡诱导的第四象限事件幅值减弱,其构成的扫掠事件强度减小,进而实现减阻。为进一步分析湍流脉动能量,使用本征正交分解,将湍流边界层内全场的瞬时脉动速度在时间上和流−法向空间进行求和并进行无量纲化,用来表征流场的脉动程度。结果表明:超疏水微凸柱壁面的展向滑移的增阻特性,削弱了其流向滑移带来的减阻效果。超疏水微沟槽壁面的流向滑移特性能有效地抑制湍流脉动,从而达到更好的减阻效果。
  • 图  1  实验装置示意图

    Figure  1.  Schematic diagram of the experimental setup

    图  2  实验模型图

    Figure  2.  Diagram of the experimental model

    图  3  结构壁面:(a)无微结构(b)微沟槽结构;(c)微凸柱结构

    Figure  3.  Structured walls: (a) no microstructure; (b) micro-riblets structure; (c) micro-convex posts structure

    图  4  均一化平均速度剖面

    Figure  4.  Comparison of normalized mean velocity profile

    图  5  平均速度剖面

    Figure  5.  Comparison of mean velocity profile

    图  6  湍流度和雷诺切应力剖面

    Figure  6.  Turbulence intensity and Reynold shear stress profiles

    图  7  ${\Lambda _{{\text{ci}}}}$识别结果

    Figure  7.  The results of ${\Lambda _{{\text{ci}}}}$ recognition

    图  8  不同尺度的脉动速度

    Figure  8.  Fluctuation velocity of different scales

    图  9  y+≈63附近展向涡相位平均流向脉动速度云图

    Figure  9.  Conditional phase averaged contour of the spanwise vortex with streamwise fluctuation velocity at y+≈63

    图  10  y+≈63附近展向涡相位平均法向脉动速度云图

    Figure  10.  Conditional phase averaged contour of the spanwise vortex with wall-normal fluctuation velocity at y+≈63

    图  11  y+≈63附近大尺度展向涡相位平均流向脉动速度云图

    Figure  11.  Conditional phase averaged contour of the large scale spanwise vortex with streamwise fluctuation velocity at y+≈63

    图  12  ${\Lambda _{{\text{ci}}}}$随${y^ + }$的变化曲线

    Figure  12.  Variation of ${\Lambda _{{\text{ci}}}}$in boundary layer

    表  1  基本湍流减阻参数

    Table  1.   Basic turbulent drag reduction parameters

    参数亲水壁面超疏水微沟槽壁面超疏水微凸柱壁面
    自由来流速度${U_\infty }/\left( {{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)$0.350.350.35
    壁面摩擦速度
    ${u_\tau }/\left( {{\text{m}} \cdot {{\text{s}}^{ - 1}}} \right)$
    0.01530.01420.0145
    内尺度雷诺数
    $R{e_\tau }$
    657642629
    壁面摩擦切应力
    ${\tau _w}/\left( {kg \cdot {m^{ - 1}} \cdot {s^{ - 2}}} \right)$
    0.2329150.2008180.209132
    壁面摩擦系数
    ${C_f}$
    0.0036980.0031490.003277
    减阻率
    $\eta $
    13.8%10.2%
    下载: 导出CSV

    表  2  各壁面湍动能的前10阶模态的能量贡献

    Table  2.   Energy contributions of the first 10 POD modes to the TKE of all surface

    亲水壁面合计超疏水微沟槽
    壁面
    合计超疏水微凸柱
    壁面
    合计
    10.1750.1750.1850.1850.1800.180
    20.0880.2640.0970.2820.1030.282
    30.0570.3210.0540.3360.0570.339
    40.0470.3690.0450.3820.0540.393
    50.0360.4040.0340.4160.0390.433
    60.0290.4330.0290.4450.0300.462
    70.0270.4610.0280.4730.0270.489
    80.0240.4850.0210.4940.0230.513
    90.0200.5050.0190.5140.0200.533
    100.0180.5230.0190.5320.0180.550
    下载: 导出CSV
  • [1] LIU M, MA L R. Drag reduction methods at solid-liquid interfaces[J]. Friction, 2022, 10(4): 491–515. doi: 10.1007/s40544-021-0502-8
    [2] WANG S T, LIU K S, YAO X, et al. Bioinspired surfaces with superwettability: new insight on theory, design, and applications[J]. Chemical Reviews, 2015, 115(16): 8230–8293. doi: 10.1021/cr400083y
    [3] ROTHSTEIN J P. Slip on superhydrophobic surfaces[J]. Annual Review of Fluid Mechanics, 2010, 42: 89–109. doi: 10.1146/annurev-fluid-121108-145558
    [4] MARUSIC I, MATHIS R, HUTCHINS N. Predictive model for wall-bounded turbulent flow[J]. Science, 2010, 329(5988): 193–196. doi: 10.1126/science.1188765
    [5] ADRIAN R J. Particle-imaging techniques for experimental fluid mechanics[J]. Annual Review of Fluid Mechanics, 1991, 23: 261–304. doi: 10.1146/annurev.fl.23.010191.001401
    [6] WESTERWEEL J, ELSINGA G E, ADRIAN R J. Particle image velocimetry for complex and turbulent flows[J]. Annual Review of Fluid Mechanics, 2013, 45: 409–436. doi: 10.1146/annurev-fluid-120710-101204
    [7] ADRIAN R J, MEINHART C D, TOMKINS C D. Vortex organization in the outer region of the turbulent boundary layer[J]. Journal of Fluid Mechanics, 2000, 422: 1–54. doi: 10.1017/s0022112000001580
    [8] ADRIAN R J. Hairpin vortex organization in wall turbulence[J]. Physics of Fluids, 2007, 19(4): 041301. doi: 10.1063/1.2717527
    [9] DANIELLO R J, WATERHOUSE N E, ROTHSTEIN J P. Drag reduction in turbulent flows over superhydrophobic surfaces[J]. Physics of Fluids, 2009, 21(8): 085103. doi: 10.1063/1.3207885
    [10] KITAGAWA A, SHIOMI Y, MURAI Y, et al. Transient velocity profiles and drag reduction due to air-filled superhydrophobic grooves[J]. Experiments in Fluids, 2020, 61(11): 1–11. doi: 10.1007/s00348-020-03070-x
    [11] LEE C, CHOI C H, KIM C J “. Structured surfaces for a giant liquid slip[J]. Physical Review Letters, 2008, 101(6): 064501. doi: 10.1103/physrevlett.101.064501
    [12] LEE C, CHOI C H, KIM C J. Superhydrophobic drag reduction in laminar flows: a critical review[J]. Experiments in Fluids, 2016, 57(12): 176. doi: 10.1007/s00348-016-2264-z
    [13] XU M C, GRABOWSKI A, YU N, et al. Superhydrophobic drag reduction for turbulent flows in open water[J]. Physical Review Applied, 2020, 13(3): 034056. doi: 10.1103/physrevapplied.13.034056
    [14] PARK H, CHOI C H, KIM C J. Superhydrophobic drag reduction in turbulent flows: a critical review[J]. Experiments in Fluids, 2021, 62(11): 229. doi: 10.1007/s00348-021-03322-4
    [15] LING H J, SRINIVASAN S, GOLOVIN K, et al. High-resolution velocity measurement in the inner part of turbulent boundary layers over super-hydrophobic surfaces[J]. Journal of Fluid Mechanics, 2016, 801: 670–703. doi: 10.1017/jfm.2016.450
    [16] ABU ROWIN W, GHAEMI S. Streamwise and spanwise slip over a superhydrophobic surface[J]. Journal of Fluid Mechanics, 2019, 870: 1127–1157. doi: 10.1017/jfm.2019.225
    [17] 姚朝晖, 张静娴, 郝鹏飞. 表面微纳结构对气-水界面稳定性和流动减阻的影响[J]. 实验流体力学, 2020, 34(2): 73–79.

    YAO Z H, ZHANG J X, HAO P F. Effect of surface micro/nano-structure on gas-water interface stability and flow drag reduction[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(2): 73–79.
    [18] VAJDI HOKMABAD B, GHAEMI S. Turbulent flow over wetted and non-wetted superhydrophobic counterparts with random structure[J]. Physics of Fluids, 2016, 28(1): 015112. doi: 10.1063/1.4940325
    [19] WOOLFORD B, PRINCE J, MAYNES D, et al. Particle image velocimetry characterization of turbulent channel flow with rib patterned superhydrophobic walls[J]. Physics of Fluids, 2009, 21(8): 085106. doi: 10.1063/1.3213607
    [20] MARTELL M B, PEROT J B, ROTHSTEIN J P. Direct numerical simulations of turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2009, 620: 31–41. doi: 10.1017/s0022112008004916
    [21] JELLY T O, JUNG S Y, ZAKI T A. Turbulence and skin friction modification in channel flow with streamwise-aligned superhydrophobic surface texture[J]. Physics of Fluids, 2014, 26(9): 095102. doi: 10.1063/1.4894064
    [22] MIN T, KIM J. Effects of hydrophobic surface on skin-friction drag[J]. Physics of Fluids, 2004, 16(7): L55–L58. doi: 10.1063/1.1755723
    [23] SEO J, GARCÍA-MAYORAL R, MANI A. Pressure fluctuations and interfacial robustness in turbulent flows over superhydrophobic surfaces[J]. Journal of Fluid Mechanics, 2015, 783: 448–473. doi: 10.1017/jfm.2015.573
    [24] BUSSE A, SANDHAM N D. Influence of an anisotropic slip-length boundary condition on turbulent channel flow[J]. Physics of Fluids, 2012, 24(5): 055111. doi: 10.1063/1.4719780
    [25] CLAUSER F H. The turbulent boundary layer[M]//Advances in Applied Mechanics. Amsterdam: Elsevier, 1956: 1-51. doi: 10.1016/s0065-2156(08)70370-3
    [26] WEI T, SCHMIDT R, MCMURTRY P. Comment on the Clauser chart method for determining the friction velocity[J]. Experiments in Fluids, 2005, 38(5): 695–699. doi: 10.1007/s00348-005-0934-3
    [27] ROBINSON S K. Coherent motions in the turbulent boundary layer[J]. Annual Review of Fluid Mechanics, 1991, 23: 601–639. doi: 10.1146/annurev.fl.23.010191.003125
    [28] ZHOU J, ADRIAN R J, BALACHANDAR S, et al. Mechanisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics, 1999, 387: 353–396. doi: 10.1017/s002211209900467x
    [29] DENG S C, PAN C, WANG J J, et al. On the spatial organization of hairpin packets in a turbulent boundary layer at low-to-moderate Reynolds number[J]. Journal of Fluid Mechanics, 2018, 844: 635–668. doi: 10.1017/jfm.2018.160
    [30] BERKOOZ G, HOLMES P, LUMLEY J L. The proper orthogonal decomposition in the analysis of turbulent flows[J]. Annual Review of Fluid Mechanics, 1993, 25: 539–575. doi: 10.1146/annurev.fl.25.010193.002543
    [31] MARUSIC I, MONTY J P. Attached eddy model of wall turbulence[J]. Annual Review of Fluid Mechanics, 2019, 51: 49–74. doi: 10.1146/annurev-fluid-010518-040427
    [32] MOIN P. Revisiting Taylor’s hypothesis[J]. Journal of Fluid Mechanics, 2009, 640: 1–4. doi: 10.1017/s0022112009992126
    [33] KROGSTAD P Å, KASPERSEN J H, RIMESTAD S. Convection velocities in a turbulent boundary layer[J]. Physics of Fluids, 1998, 10(4): 949–957. doi: 10.1063/1.869617
    [34] DENNIS D J C, NICKELS T B. On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer[J]. Journal of Fluid Mechanics, 2008, 614: 197–206. doi: 10.1017/s0022112008003352
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  204
  • HTML全文浏览量:  92
  • PDF下载量:  23
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-18
  • 修回日期:  2022-04-10
  • 录用日期:  2022-04-18
  • 网络出版日期:  2023-08-29

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日