留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速来流中的支板辅助喷注掺混特性研究

刘源 孙明波 梁昌海 田野 李季

刘源,孙明波,梁昌海,等. 超声速来流中的支板辅助喷注掺混特性研究[J]. 实验流体力学,2022,36(4):37-44 doi: 10.11729/syltlx20220011
引用本文: 刘源,孙明波,梁昌海,等. 超声速来流中的支板辅助喷注掺混特性研究[J]. 实验流体力学,2022,36(4):37-44 doi: 10.11729/syltlx20220011
LIU Y,SUN M B,LIANG C H,et al. Mixing characteristic and flow features of pylon-aided fuel injection into a supersonic crossflow[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):37-44. doi: 10.11729/syltlx20220011
Citation: LIU Y,SUN M B,LIANG C H,et al. Mixing characteristic and flow features of pylon-aided fuel injection into a supersonic crossflow[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):37-44. doi: 10.11729/syltlx20220011

超声速来流中的支板辅助喷注掺混特性研究

doi: 10.11729/syltlx20220011
基金项目: 国家自然科学基金(12102454)
详细信息
    作者简介:

    刘源:(1991—),男,河南温县人,博士研究生,助理研究员。研究方向:高超声速推进技术。通信地址:四川省绵阳市涪城区二环路南段6号中国空气动力研究与发展中心高超声速冲压发动机技术重点实验室(621000)。E-mail:yuanl1991@163.com

    通讯作者:

    E-mail:yuanl1991@163.com

  • 中图分类号: V231.2

Mixing characteristic and flow features of pylon-aided fuel injection into a supersonic crossflow

  • 摘要: 采用Reynolds-averaged Navier–Stokes(RANS)数值方法研究了马赫数2.95超声速横向来流中的支板辅助燃料喷注掺混特性。在射流与横向来流动量比7.7工况下进行了数值模拟,并与无支板的普通壁面喷注工况进行对比。研究结果表明:产生于支板前缘的诱导激波被观测到汇聚于分离激波,在支板辅助喷注工况下,反转旋涡对(CVP)结构更多,边界层内燃料扩散速度更快、射流穿透更深,最终体现为在未增大流动压力损失的前提下,支板极大地提升了燃料混合效率。此外,还阐述了支板对燃料–空气混合增强的作用机理。
  • 图  1  支板辅助喷注装置[19]

    Figure  1.  Pylon-aided injection configuration[19]

    图  2  模型网格划分

    Figure  2.  Schematic of the simulation setup

    图  3  支板辅助喷注影响域内三维流线云图

    Figure  3.  Flow structures of pylon-aided fuel injection into a supersonic crossflow

    图  4  燃料分布边界和分离区内燃料分布

    Figure  4.  C2H4 distribution of pylon-aided fuel injection into a supersonic crossflow compared with the normal injection

    图  5  流向中心截面燃料质量分数分布云图

    Figure  5.  C2H4 distribution of pylon-aided fuel injection into a supersonic crossflow compared with the normal injection: z/d=0

    图  6  法向截面燃料分布切片图

    Figure  6.  C2H4 distribution for different injection configurations in the supersonic crossflow for pylon-aided fuel injection and the normal injection

    图  7  法向截面燃料分布云图和二维流线云图(PY:支板辅助喷注;NO:普通壁面喷注)

    Figure  7.  Streamlines for different injection configurations in the supersonic crossflow, left: pylon-aided fuel injection and right: the normal injection

    图  8  边界层内燃料分布云图(上:普通壁面喷注;下:支板辅助喷注)

    Figure  8.  C2H4 distribution for different injection configurations in the supersonic crossflow, top: the normal injection and bottom: pylon-aided fuel injection

    图  9  两种工况下展向截面上燃料沿流向的分布曲线

    Figure  9.  C2H4 distribution for different spanwise locations in the supersonic crossflow

    图  10  两种工况下的总压恢复系数与混合效率

    Figure  10.  Mixing characteristic and total pressure recovery of pylon-aided fuel injection into a supersonic crossflow compared with the normal injection

    表  1  支板几何参数

    Table  1.   Pylon geometry parameters

    LHW倾角θ喷注距离xp
    26 mm15 mm5 mm30°3 mm
    下载: 导出CSV

    表  2  射流参数

    Table  2.   Air jet conditions for the simulation

    射流/来流动量比J马赫数Maj总温T0j压力p0j雷诺数Rej
    7.71.0300 K375 kPa2.3×105
    下载: 导出CSV
  • [1] SEGAL C. The scramjet engine: processes and characteristics[M]. Cambridge: Cambridge University Press, 2009. doi: 10.1017/cbo9780511627019
    [2] SEINER J M,DASH S M,KENZAKOWSKI D C. Historical survey on enhanced mixing in scramjet engines[J]. Journal of Propulsion and Power,2001,17(6):1273-1286. doi: 10.2514/2.5876
    [3] 张顺平. 超声速斜坡喷注器混合增强及火焰稳定特性研究[D]. 长沙: 国防科学技术大学, 2008.

    ZHANG S P. Investigations on mixing enhancement and flame holding characteristics of ramp injector in supersonic flow[D]. Changsha: National University of Defense Technology, 2008.
    [4] PEAKE D, HENRY F, PEARCEY H. Viscous flow control with air-jet vortex generators[C]//Proc of the 17th Applied Aerodynamics Conference. 1999: 3175. doi: 10.2514/6.1999-3175
    [5] LIN J C. Review of research on low-profile vortex generators to control boundary-layer separation[J]. Progress in Aerospace Sciences,2002,38(4-5):389-420. doi: 10.1016/S0376-0421(02)00010-6
    [6] FORD C P, BABINSKY H. Micro-ramp control for oblique shock wave/boundary layer interactions[C]//Proc of the 37th AIAA Fluid Dynamics Conference and Exhibit. 2007: 4115. doi: 10.2514/6.2007-4115
    [7] BABINSKY H,LI Y,FORD C W P. Microramp control of supersonic oblique shock-wave/boundary-layer interactions[J]. AIAA Journal,2009,47(3):668-675. doi: 10.2514/1.38022
    [8] SUN Z Z,SCARANO F,VAN OUDHEUSDEN B W,et al. Numerical and experimental investigations of the supersonic microramp wake[J]. AIAA Journal,2014,52(7):1518-1527. doi: 10.2514/1.j052649
    [9] BLINDE P L,HUMBLE R A,OUDHEUSDEN B W,et al. Effects of micro-ramps on a shock wave/turbulent boundary layer interaction[J]. Shock Waves,2009,19(6):507-520. doi: 10.1007/s00193-009-0231-9
    [10] BALARAC G. Etude numérique de la dynamique tourbillon-naire et du mélange dans les jets coaxiaux turbulents [D]. Grenoble: Institut National Polytechnique de Grenoble, 2006.
    [11] BAKE S,MEYER D G W,RIST U. Turbulence mechanism in Klebanoff transition: a quantitative comparison of experiment and direct numerical simulation[J]. Journal of Fluid Mechanics,2002,459:217-243. doi: 10.1017/s0022112002007954
    [12] SCHETZ J A,MADDALENA L,THROCKMORTON R,et al. Complex wall injector array for high-speed combustors[J]. Journal of Propulsion and Power,2008,24(4):673-680. doi: 10.2514/1.36660
    [13] NORTHAM G B,GREENBERG I,BYINGTON C S,et al. Evaluation of parallel injector configurations for Mach 2 combustion[J]. Journal of Propulsion and Power,1992,8(2):491-499. doi: 10.2514/3.23503
    [14] HARTFIELD R J Jr,HOLLO S D,McDANIEL J C. Experimental investigation of a supersonic swept ramp injector using laser-induced iodine fluorescence[J]. Journal of Propulsion and Power,1994,10(1):129-135. doi: 10.2514/3.23721
    [15] RIGGINS D W,McCLINTON C R,ROGERS R C,et al. Investigation of scramjet injection strategies for high Mach number flows[J]. Journal of Propulsion and Power,1995,11(3):409-418. doi: 10.2514/3.23859
    [16] OWENS M,MULLAGIRI S,SEGAL C,et al. Effects of fuel preinjection on mixing in Mach 1.6 airflow[J]. Journal of Propulsion and Power,2001,17(3):605-610. doi: 10.2514/2.5784
    [17] COX S K, FULLER R P, SCHETZ J A, et al. Vortical interactions generated by an injector array to enhance mixing in a supersonic flow[C]//Proc of the 32nd Aerospace Sciences Meeting and Exhibit. 1994: 708. doi: 10.2514/6.1994-708
    [18] FULLER R, WU P K, NEJAD A, et al. Fuel-vortex interactions for enhanced mixing in supersonic flow[C]//Proc of the 32nd Joint Propulsion Conference and Exhibit. 1996: 2661. doi: 10.2514/6.1996-2661
    [19] VINOGRADOV V A, PRUDNIKOV A G. Injection of liquid into the strut shadow at supersonic velocities[C]//Proc of the SAE Technical Paper Series. 1993. doi: 10.4271/931455
    [20] GILINSKY M, KHAIKINE V, AKYURTLU A, et al. Numerical and experimental tests of supersonic inlet utilizing a pylon set for mixing, combustion and thrust enhancement[C]//Proc of the 43rd AIAA Aerospace Sciences Meeting and Exhibit. 2005. doi: 10.2514/6.2005-21
    [21] AKYURTLU A, AKYURTLU J, GONOR A, et al. Numerical and experimental tests of a supersonic inlet with pylon set and fuel injection through pylons[C]//Proc of the 44th AIAA Aerospace Sciences Meeting and Exhibit. 2006: 1032. doi: 10.2514/6.2006-1032
    [22] TAKAHASHI H,TU Q Y,SEGAL C. Effects of pylon-aided fuel injection on mixing in a supersonic flowfield[J]. Journal of Propulsion and Power,2010,26(5):1092-1101. doi: 10.2514/1.48393
    [23] VINOGRADOV V, GRACHEV V, PETROV M, et al. Experimental investigation of a 2-D dual mode scramjet with hydrogenfuel at Mach 4—6[C]//Proc of the 2nd International Aerospace Planes Conference. 1990: 5269. doi: 10.2514/6.1990-5269
    [24] GUOSKOV O V,KOPCHENOV V I,LOMKOV K E,et al. Numerical research of gaseous fuel preinjection in hypersonic three-dimensional inlet[J]. Journal of Propulsion and Power,2001,17(6):1162-1169. doi: 10.2514/2.5890
    [25] POHLMAN M, GREENDYKE R. Critical design parameters for pylon-aided gaseous fuel injection[C]//Proc of the 47th AIAA Aerospace Sciences Meeting including The New Horizons Forum and Aerospace Exposition. 2009: 1422. doi: 10.2514/6.2009-1422
    [26] GRUBER M R,CARTER C D,MONTES D R,et al. Experimental studies of pylon-aided fuel injection into a supersonic crossflow[J]. Journal of Propulsion and Power,2008,24(3):460-470. doi: 10.2514/1.32231
    [27] VISHWAKARMA M,VAIDYANATHAN A. Experimental study of mixing enhancement using pylon in supersonic flow[J]. Acta Astronautica,2016,118:21-32. doi: 10.1016/j.actaastro.2015.09.011
    [28] LIU Y,SUN M B,LIANG C H,et al. Flowfield structures of pylon-aided fuel injection into a supersonic crossflow[J]. Acta Astronautica,2019,162:306-313. doi: 10.1016/j.actaastro.2019.06.022
    [29] LIU Y,SUN M B,YANG Y X,et al. Turbulent boundary layer subjected to a sonic transverse jet in a supersonic flow[J]. Aerospace Science and Technology,2020,104:106016. doi: 10.1016/j.ast.2020.106016
    [30] LIANG C H,SUN M B,LIU Y,et al. Numerical study of flow structures and mixing characteristics of a sonic jet in supersonic crossflow[J]. Acta Astronautica,2020,166:78-88. doi: 10.1016/j.actaastro.2019.10.008
    [31] SMITH S H,MUNGAL M G. Mixing, structure and scaling of the jet in crossflow[J]. Journal of Fluid Mechanics,1998,357(1):83-122. doi: 10.1017/s0022112097007891
    [32] ZHAO M J,YE T H. URANS study of pulsed hydrogen jet characteristics and mixing enhancement in supersonic crossflow[J]. International Journal of Hydrogen Energy,2019,44(36):20493-20503. doi: 10.1016/j.ijhydene.2019.06.027
  • 加载中
图(10) / 表(2)
计量
  • 文章访问数:  357
  • HTML全文浏览量:  139
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-02-14
  • 修回日期:  2022-05-15
  • 录用日期:  2022-05-27
  • 网络出版日期:  2022-08-23
  • 刊出日期:  2022-09-02

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日