留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究

梁定新 薛春东 曾效 覃开蓉

梁定新, 薛春东, 曾效, 等. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究[J]. 实验流体力学, 2023, 37(2): 36-45 doi: 10.11729/syltlx20210184
引用本文: 梁定新, 薛春东, 曾效, 等. 流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究[J]. 实验流体力学, 2023, 37(2): 36-45 doi: 10.11729/syltlx20210184
LIANG D X, XUE C D, ZENG X, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 doi: 10.11729/syltlx20210184
Citation: LIANG D X, XUE C D, ZENG X, et al. Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 36-45 doi: 10.11729/syltlx20210184

流动聚焦微通道中滴流模式下非牛顿液滴生成的实验研究

doi: 10.11729/syltlx20210184
基金项目: 国家自然科学基金项目(11802054);中央高校基本科研业务费专项资金项目(DUT21YG127);辽宁省自然科学基金(2021-MS-133)
详细信息
    作者简介:

    梁定新:(1998—),女,山西汾阳人,硕士研究生。研究方向:非牛顿微液滴生成实验研究。通信地址:辽宁省大连市甘井子区凌工路2号大连理工大学光电工程与仪器科学学院微流控与智能医疗技术实验室(116024)。E-mail:Liangdingxin@mail.dlut.edu.cn

    通讯作者:

    E-mail:xuechundong@dlut.edu. cn

  • 中图分类号: O35

Experimental study on generation of non-Newtonian droplets in dripping mode in a flow focusing microchannel

  • 摘要: 液滴微流控是微流控领域重要分支,其所涉及的生物流体往往具有非牛顿性质。为深入理解非牛顿性质对液滴生成的影响,配置4种不同流变特性的流体,系统研究流动聚焦微通道中滴流模式下的非牛顿液滴生成。结果表明:与牛顿液滴相比,非牛顿液滴生成表现出更显著的“连珠现象”;不同非牛顿性质对液滴生成的影响截然不同,剪切稀化和弹性效应对液滴尺寸和生成频率的作用相反。液柱颈缩动力学结果显示:单一的剪切稀化效应使得非牛顿液滴液柱颈缩过程与牛顿液滴相似,均只有流动驱动阶段;单一的弹性效应则使得非牛顿液滴液柱颈缩后期出现不同于牛顿流体的毛细驱动阶段;而剪切稀化和弹性效应的共同作用会导致液柱颈缩过程中更显著的毛细驱动阶段和液柱断裂后更显著的“连珠现象”。
  • 图  1  离散相流体流变特性测量结果

    Figure  1.  Rheological measurements of dispersed fluids

    图  2  界面张力测量实验图像

    Figure  2.  Experimental image of interfacial tension measurement

    图  3  实验装置原理图

    Figure  3.  Schematic diagram of experimental set-up

    图  4  滴流模式下4种离散相液滴生成过程实验图像

    Figure  4.  Experimental images of droplet formation process of four dispersed phases in dripping mode

    图  5  液滴尺寸和液滴生成频率随流量比的变化

    Figure  5.  Droplet size and the frequency of droplet generation vary with the flow ratio

    图  6  4种离散相生成液滴的相对尺寸和相对生成频率随流量比的变化

    Figure  6.  Relative droplet size and relative frequency vary with the flow ratio of the four dispersed phases

    图  7  4种液滴生成时液柱颈缩过程图

    Figure  7.  Diagram of liquid column necking process during the formation of four droplets

    图  8  不同流量比下扩展延伸率随时间的变化

    Figure  8.  Extensional strain rate$\dot \varepsilon $as functions of the elapsed time at different flow ratio

    图  9  无量纲最小距离Wm/W随无量纲剩余时间(tpt)/τt的变化

    Figure  9.  Plots of the dimensionless minimum width Wm/W of the dispersed filament to the dimentionless residual time (tpt)/τt

    图  10  无量纲最小距离Wm/W随无量纲偏移时间(tpt)/τt的变化

    Figure  10.  Plot of the dimensionless minimum width Wm/W of the dispersed filament to the dimensionless shift time (tpt)/τt

    表  1  Carreau-Yasuda模型和改进Carreau模型的拟合系数

    Table  1.   The fitting parameters of the Carreau-Yasuda model and modified Carreau model

    流体${\eta _0 }/({\rm{Pa} } \cdot {\rm{s} } )$${\eta _\infty }/({\rm{Pa} } \cdot {\rm{s} })$${\lambda _{\rm{C}}}/{\rm{ms}}$an
    XG0.01870.001820.2720.03
    PEO0.01060.004620.021.10.22
    下载: 导出CSV

    表  2  不同溶液与橄榄油之间的界面张力

    Table  2.   Interfacial tension between different solutions and olive oil

    流体密度ρ/(g·cm−3界面张力$ \sigma $/(mN·m−1
    GW1.15820.49±0.16
    PVP1.02018.22±0.17
    XG1.00121.54±0.28
    PEO1.00418.22±0.23
    下载: 导出CSV

    表  3  不同离散相液滴的拟合系数

    Table  3.   Fitting coefficients of droplets of different dispersed phases

    拟合系数液滴
    GWPVPXGPEO
    A 1.21±0.02 1.01±0.09 1.48±0.08 1.19±0.04
    B −0.05±0.01 −0.04±0.01 −0.07±0.01 −0.05±0.01
    C 1.10×10−3 7.00×10−4 1.37×10−3 1.20×10−3
    D 0.44±0.01 0.63±0.19 0.2±0.09 0.55±0.03
    E 0.11±0.01 0.14±0.01 0.08±0.01 0.06±0.01
    下载: 导出CSV
  • [1] KAMINSKI T S, SCHELER O, GARSTECKI P. Droplet microfluidics for microbiology: techniques, applications and challenges[J]. Lab on a Chip, 2016, 16(12): 2168–2187. doi: 10.1039/c6lc00367b
    [2] MAJUMDER S, WUBSHET N, LIU A P. Encapsulation of complex solutions using droplet microfluidics towards the synthesis of artificial cells[J]. Journal of Micromechanics and Microengineering, 2019, 29(8): 083001. doi: 10.1088/1361-6439/ab2377
    [3] DING Y, HOWES P D, DEMELLO A J. Recent advances in droplet microfluidics[J]. Analytical Chemistry, 2020, 92(1): 132–149. doi: 10.1021/acs.analchem.9b05047
    [4] VECCHIOLLA D, GIRI V, BISWAL S L. Bubble-bubble pinch-off in symmetric and asymmetric microfluidic expansion channels for ordered foam generation[J]. Soft Matter, 2018, 14(46): 9312–9325. doi: 10.1039/c8sm01285g
    [5] YUAN D, ZHAO Q B, YAN S, et al. Recent progress of particle migration in viscoelastic fluids[J]. Lab on a Chip, 2018, 18(4): 551–567. doi: 10.1039/c7lc01076a
    [6] LIU Z M, YANG Y, DU Y, et al. Advances in droplet-based microfluidic technology and its applications[J]. Chinese Journal of Analytical Chemistry, 2017, 45(2): 282–296. doi: 10.1016/S1872-2040(17)60994-0
    [7] ZHU P G, WANG L Q. Passive and active droplet generation with microfluidics: a review[J]. Lab on a Chip, 2016, 17(1): 34–75. doi: 10.1039/c6lc01018k
    [8] VLADISAVLJEVIĆ G T, KOBAYASHI I, NAKAJIMA M. Production of uniform droplets using membrane, microchannel and microfluidic emulsification devices[J]. Microfluidics and Nanofluidics, 2012, 13(1): 151–178. doi: 10.1007/s10404-012-0948-0
    [9] MAZUTIS L, BARET J C, GRIFFITHS A D. A fast and efficient microfluidic system for highly selective one-to-one droplet fusion[J]. Lab on a Chip, 2009, 9(18): 2665–2672. doi: 10.1039/b903608c
    [10] DENG X K, REN Y K, HOU L K, et al. Compound-droplet-pairs-filled hydrogel microfiber for electric-field-induced selective release[J]. Small, 2019, 15(42): 1903098. doi: 10.1002/smll.201903098
    [11] 李战华, 吴健康, 胡国庆. 微流控芯片中的流体流动[M]. 北京: 科学出版社, 2012.

    LI Z H, WU J K, HU G Q. Fluid flow in microfluidic chips[M]. Beijing: Science Press, 2012.
    [12] 陈晓东, 胡国庆. 微流控器件中的多相流动[J]. 力学进展, 2015, 45(1): 55–110.

    CHEN X D, HU G Q. Multiphase flow in microfluidic devices[J]. Advances in Mechanics, 2015, 45(1): 55–110.
    [13] ROSTAMI B, MORINI G L. Experimental characterization of a micro cross-junction as generator of Newtonian and non-Newtonian droplets in silicone oil flow at low Capillary numbers[J]. Experimental Thermal and Fluid Science, 2019, 103: 191–200. doi: 10.1016/j.expthermflusci.2019.01.008
    [14] ROSTAMI B, MORINI G L. Micro droplets of non-Newtonian solutions in silicone oil flow through a hydrophobic micro cross-junction[J]. Journal of Physics: Conference Series, 2017, 923: 012021. doi: 10.1088/1742-6596/923/1/012021
    [15] FU T T, MA Y G, LI H Z. Breakup dynamics of slender droplet formation in shear-thinning fluids in flow-focusing devices[J]. Chemical Engineering Science, 2016, 144: 75–86. doi: 10.1016/j.ces.2015.12.031
    [16] 刘赵淼, 杨洋. 几何构型对流动聚焦生成微液滴的影响[J]. 力学学报, 2016, 48(4): 867–876. doi: 10.6052/0459-1879-16-063

    LIU Z M, YANG Y. Influence of geometry configurations on the microdroplets in flow focusing microfluidics[J]. Chinese Journal of Theoretical and Applied Mechanics, 2016, 48(4): 867–876. doi: 10.6052/0459-1879-16-063
    [17] MOON S K, CHEONG I W, CHOI S W. Effect of flow rates of the continuous phase on droplet size in dripping and jetting regimes in a simple fluidic device for coaxial flow[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2014, 454: 84–88. doi: 10.1016/j.colsurfa.2014.04.006
    [18] TAN Y C, CRISTINI V, LEE A P. Monodispersed microfluidic droplet generation by shear focusing microfluidic device[J]. Sensors and Actuators B: Chemical, 2006, 114(1): 350–356. doi: 10.1016/j.snb.2005.06.008
    [19] JOANICOT M, AJDARI A. Droplet control for microfluidics[J]. Science, 2005, 309(5736): 887–888. doi: 10.1126/science.1112615
    [20] FATEHIFAR M, REVELL A, JABBARI M. Non-Newtonian droplet generation in a cross-junction microfluidic channel[J]. Polymers, 2021, 13(12): 1915. doi: 10.3390/polym13121915
    [21] DU W, FU T T, DUAN Y F, et al. Breakup dynamics for droplet formation in shear-thinning fluids in a flow-focusing device[J]. Chemical Engineering Science, 2018, 176: 66–76. doi: 10.1016/j.ces.2017.10.019
    [22] HARVIE D J E, DAVIDSON M R, COOPER-WHITE J J, et al. A parametric study of droplet deformation through a microfluidic contraction: shear thinning liquids[J]. International Journal of Multiphase Flow, 2007, 33(5): 545–556. doi: 10.1016/j.ijmultiphaseflow.2006.12.002
    [23] DU W, FU T T, ZHANG Q D, et al. Self-similar breakup of viscoelastic thread for droplet formation in flow-focusing devices[J]. AIChE Journal, 2017, 63(11): 5196–5206. doi: 10.1002/aic.15834
    [24] ARRATIA P E, GOLLUB J P, DURIAN D J. Polymeric filament thinning and breakup in microchannels[J]. Physical Review E, 2008, 77(3): 036309. doi: 10.1103/physreve.77.036309
    [25] DERZSI L, KASPRZYK M, PLOG J P, et al. Flow focusing with viscoelastic liquids[J]. Physics of Fluids, 2013, 25(9): 092001. doi: 10.1063/1.4817995
    [26] REN Y, LIU Z, SHUM H C. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem[J]. Lab on a Chip, 2015, 15(1): 121–134. doi: 10.1039/c4lc00798k
    [27] KIM D Y, SHIM T S, KIM J M. Elastic effects of dilute polymer solution on bubble generation in a microfluidic flow-focusing channel[J]. Korea-Australia Rheology Journal, 2017, 29(2): 147–153. doi: 10.1007/s13367-017-0016-0
    [28] SHI Y, TANG G H. Lattice boltzmann simulation of droplet formation in non-Newtonian fluids[J]. Communications in Computational Physics, 2015, 17(4): 1056–1072. doi: 10.4208/cicp.2014.m333
    [29] XUE C D, SUN Z P, LI Y J, et al. Non-Newtonian droplet generation in a flow-focusing microchannel[C]//Proceedings of ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer, Dalian, China. 2019. doi: 10.1115/MNHMT2019-4196
    [30] YASUDA K, ARMSTRONG R C, COHEN R E. Shear flow properties of concentrated solutions of linear and star branched polystyrenes[J]. Rheologica Acta, 1981, 20(2): 163–178. doi:
    [31] LI D, XUAN X C. Fluid rheological effects on particle migration in a straight rectangular microchannel[J]. Microfluidics and Nanofluidics, 2018, 22(4): 1–10. doi: 10.1007/s10404-018-2070-4
    [32] BHAT P P, APPATHURAI S, HARRIS M T, et al. Formation of beads-on-a-string structures during break-up of viscoelastic filaments[J]. Nature Physics, 2010, 6(8): 625–631. doi: 10.1038/nphys1682
    [33] OLIVEIRA M S N, MCKINLEY G H. Iterated stretching and multiple beads-on-a-string phenomena in dilute solutions of highly extensible flexible polymers[J]. Physics of Fluids, 2005, 17(7): 071704. doi: 10.1063/1.1949197
    [34] ZHOU C F, YUE P T, FENG J J. Formation of simple and compound drops in microfluidic devices[J]. Physics of Fluids, 2006, 18(9): 092105. doi: 10.1063/1.2353116
    [35] XUE C D, CHEN X D, LI Y J, et al. Breakup dynamics of semi-dilute polymer solutions in a microfluidic flow-focusing device[J]. Micromachines, 2020, 11(4): 406. doi: 10.3390/mi11040406
    [36] ROUMPEA E, CHINAUD M, ANGELI P. Experimental investigations of non-Newtonian/Newtonian liquid-liquid flows in microchannels[J]. AIChE Journal, 2017, 63(8): 3599–3609. doi: 10.1002/aic.15704
    [37] HONG J S, COOPER-WHITE J. Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channe[J]. Korea-Australia Rheology Journal, 2009, 21(4): 269–280.
  • 加载中
图(10) / 表(3)
计量
  • 文章访问数:  214
  • HTML全文浏览量:  101
  • PDF下载量:  36
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-14
  • 修回日期:  2022-03-24
  • 录用日期:  2022-04-06
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日