留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于稀土Dy离子荧光强度比的温度测试技术

张粟 庞然 姜丽宏 李达 李成宇 张洪杰

张粟, 庞然, 姜丽宏, 等. 基于稀土Dy离子荧光强度比的温度测试技术[J]. 实验流体力学, 2023, 37(2): 115-124 doi: 10.11729/syltlx20210176
引用本文: 张粟, 庞然, 姜丽宏, 等. 基于稀土Dy离子荧光强度比的温度测试技术[J]. 实验流体力学, 2023, 37(2): 115-124 doi: 10.11729/syltlx20210176
ZHANG S, PANG R, JIANG L H, et al. A temperature measurement technique based on fluorescence intensity ratio of rare earth Dy ion[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 115-124 doi: 10.11729/syltlx20210176
Citation: ZHANG S, PANG R, JIANG L H, et al. A temperature measurement technique based on fluorescence intensity ratio of rare earth Dy ion[J]. Journal of Experiments in Fluid Mechanics, 2023, 37(2): 115-124 doi: 10.11729/syltlx20210176

基于稀土Dy离子荧光强度比的温度测试技术

doi: 10.11729/syltlx20210176
基金项目: 中国科学院青年创新促进会人才项目(2017272)
详细信息
    作者简介:

    张粟:(1983—),男,安徽宿州人,博士,研究员。研究方向:稀土光功能材料,发光温度测量技术。通信地址:吉林省长春市朝阳区人民大街5625号中国科学院长春应用化学研究所稀土资源利用国家重点实验室(130022)。E-mail:zhangsu@ciac.ac.cn

    通讯作者:

    E-mail:zhangsu@ciac.ac.cn

  • 中图分类号: O616

A temperature measurement technique based on fluorescence intensity ratio of rare earth Dy ion

  • 摘要: 大面积表面温度测量技术在风洞测温领域中具有重要意义。为满足更高表面温度的测量需求,亟待开展新型测温技术及温度传感材料的研发。基于稀土离子的热耦合能级荧光强度比进行温度测量是一种新型测温技术。本文合成了一种温敏发光材料(YAG:Dy),研究了50~1000 ℃范围内稀土Dy3+离子的一对热耦合能级(4F9/26H15/24I15/26H15/2)的跃迁发光强度比与温度的对应关系。基于该材料,本文开展了荧光强度比测温与红外测温仪测温的对比实验,实验结果表明:两者的测量结果有很高的吻合度,证明该温敏发光材料(YAG:Dy)可用于50~1000 ℃范围内的温度测量。
  • 图  1  稀土Dy3+ 离子的能级图

    Figure  1.  The energy levels of Dy3+

    图  2  喷涂YAG:Dy材料的陶瓷片在自然光和365 nm紫外灯下的照片

    Figure  2.  The photos of ceramic sheet sprayed with YAG:Dy under natural light and 365 nm UV lamp

    图  3  室温下YAG:Dy的发射光谱(室温)

    Figure  3.  The emission spectrum of YAG:Dy (room temperature)

    图  4  室温下YAG:Dy的激发光谱(室温)

    Figure  4.  The excitation spectrum of YAG:Dy (room temperature)

    图  5  YAG:Dy在不同温度下的发射光谱

    Figure  5.  The emission spectrum of YAG:Dy at different temperatures

    图  6  温度标定实验装置

    Figure  6.  The temperature calibration experimental device

    图  7  温度标定系统示意图

    Figure  7.  Schematic diagram of temperature calibration system

    图  8  温度测试仪器图

    Figure  8.  Photo of temperature test instruments

    图  9  不同温度下喷涂YAG:Dy材料的陶瓷片的照片

    Figure  9.  Photos of ceramic sheet sprayed with YAG:Dy material at different temperatures

    图  10  650 ℃时的发光图像处理

    Figure  10.  Image processing of emission at 650 ℃

    图  11  两个波段发光强度比值与温度的关系

    Figure  11.  The relationship between the ratio of two bands and temperature

    图  12  陶瓷片在电炉上的照片

    Figure  12.  Photo of ceramic sheet sprayed with YAG:Dy on electric furnace

    图  13  使用荧光强度比法获得的陶瓷片表面温度分布

    Figure  13.  Surface temperature distribution of ceramic sheet obtained by fluorescence intensity ratio method

    图  14  红外热像仪测得的陶瓷片表面温度分布

    Figure  14.  Surface temperature distribution of ceramic sheet measured by Infrared thermal imager

    图  15  荧光强度比法和红外热像仪2测试结果的比较

    Figure  15.  Comparison between fluorescence intensity ratio method and infrared thermal imager 2 test results

    表  1  相机型号及主要参数

    Table  1.   Camera model and main parameters

    名称品牌相机型号像素数(像素×像素)波长
    CCD相机AndoriXon Ultra 897512×512可见光
    红外热像仪1上海都泰DTC111M764×4800.85~1.1 µm
    红外热像仪2上海都泰DTC1400382×2887.5~13 µm
    下载: 导出CSV

    表  2  带通滤波片主要参数

    Table  2.   The parameters of bandpass filter

    名称中心波长/nm带宽/nm透过率截止范围/nm截止深度
    滤波片1455±210>85%200~800OD3~OD4
    滤波片2485±210>80%200~750OD3~OD4
    下载: 导出CSV

    表  3  拟合参数表

    Table  3.   Fitting parameters

    参数
    y05593.26623
    A1−3707.78694
    t1−0.01571
    A2−208.4351
    t2−0.14232
    A3−5354.53068
    t3−5.94912
    Reduced Chi-Square67.37487
    R2 (COD)0.99946
    Adjusted R20.99923
    下载: 导出CSV
  • [1] 钱炜祺, 周宇, 何开锋, 等. 表面热流辨识技术在边界层转捩位置测量中的应用初步研究[J]. 实验流体力学, 2012, 26(1): 74–78. doi: 10.3969/j.issn.1672-9897.2012.01.015

    QIAN W Q, ZHOU Y, HE K F, et al. A preliminary study for application of surface heat flux estimation technology in transition measurement[J]. Journal of Experiments in Fluid Mechanics, 2012, 26(1): 74–78. doi: 10.3969/j.issn.1672-9897.2012.01.015
    [2] 韩曙光, 贾广森, 文帅, 等. 磷光热图技术在常规高超声速风洞热环境实验中的应用[J]. 气体物理, 2017, 2(4): 56–63. doi: 10.19527/j.cnki.2096-1642.2017.04.006

    HAN S G, JIA G S, WEN S, et al. Heat transfer measurement using a quantitative phosphor thermography system in blowdown hypersonic facility[J]. Physics of Gases, 2017, 2(4): 56–63. doi: 10.19527/j.cnki.2096-1642.2017.04.006
    [3] HAN S G, WEN S, WU C H, et al. Global heat-flux measurements using phosphor thermography technique in gun tunnel[C]//Proc of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. 2015. doi: 10.2514/6.2015-3517
    [4] KLEIN C, YORITA D, HENNE U, et al. Application of Temperature Sensitive Paint to investigate laminar-to-turbulent transition on nacelles[C]//Proc of the AIAA Scitech 2020 Forum. 2020: 1608. doi: 10.2514/6.2020-1608
    [5] BUCK G. Surface temperature/heat transfer measurement using a quantitative phosphor thermography system[C]//Proc of the 29th Aerospace Sciences Meeting. 1991: 64. doi: 10.2514/6.1991-64
    [6] THOMPSON R A, HARRIS H H II, BERRY S A, et al. Hypersonic boundary layer transition for X-33 Phase II vehicle[C]//Proc of the 36th AIAA Aerospace Sciences Meeting and Exhibit. 1998: 867. doi: 10.2514/6.1998-867
    [7] 张扣立, 周嘉穗, 孔荣宗, 等. CARDC 激波风洞 TSP 技术研究进展[J]. 空气动力学学报, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151

    ZHANG K L, ZHOU J S, KONG R Z, et al. Development of TSP technique in shock tunnel of CARDC[J]. Acta Aerodynamica Sinica, 2016, 34(6): 738–743. doi: 10.7638/kqdlxxb-2015.0151
    [8] 毕志献, 韩曙光, 伍超华, 等. 磷光热图测热技术研究[J]. 实验流体力学, 2013, 27(3): 87–92. doi: 10.3969/j.issn.1672-9897.2013.03.017

    BI Z X, HAN S G, WU C H, et al. Phosphor thermography study in gun tunnel[J]. Journal of Experiments in Fluid Mechanics, 2013, 27(3): 87–92. doi: 10.3969/j.issn.1672-9897.2013.03.017
    [9] 刘祥, 熊健, 马护生, 等. 温敏漆校准及图像后处理方法研究[J]. 实验流体力学, 2020, 34(4): 53–61. doi: 10.11729/syltlx20190054

    LIU X, XIONG J, MA H S, et al. The calibration and image post-processing method research of temperature-sensitive paint[J]. Journal of Experiments in Fluid Mechanics, 2020, 34(4): 53–61. doi: 10.11729/syltlx20190054
    [10] 江小峰, 李亚东, 李欣, 等. 基于荧光寿命机理的光纤温度传感器研究[J]. 分析测试技术与仪器, 2015, 21(2): 124–128. doi: 10.16495/j.1006-3757.2015.02.011

    JIANG X F, LI Y D, LI X, et al. Fiber temperature sensor based on fluorescent lifetime[J]. Analysis and Testing Technology and Instruments, 2015, 21(2): 124–128. doi: 10.16495/j.1006-3757.2015.02.011
    [11] 李心悦. 基于发光材料的温度探测新机制探索[D]. 合肥: 中国科学技术大学, 2016.

    LI X Y. The new mechanisms based on luminescent materials for temperature sensing[D]. Hefei: University of Science and Technology of China, 2016.
    [12] 芦泓宇. 基于稀土掺杂上转换材料荧光峰值比的温度传感[D]. 哈尔滨: 哈尔滨工业大学, 2017.

    LU H Y. Temperature sensing of rare earth doped upconversion materials based on fluorescence intensity ratio technique[D]. Harbin: Harbin Institute of Technology, 2017.
    [13] 田媛媛. 稀土离子掺杂铌酸盐微纳米材料的上转换发光及温度传感特性的研究[D]. 太原: 太原理工大学, 2017.

    TIAN Y Y. Study of upconversion luminescence and temperature sensing behavior of rare earth ions doped niobate micro-/nanoparticles[D]. Taiyuan: Taiyuan University of Technology, 2017.
    [14] FU J P, PANG R, JIANG L H, et al. A novel dichromic self-referencing optical probe SrO:Bi3+, Eu3+ for temperature spatially and temporally imaging[J]. Dalton Transactions, 2016, 45(34): 13317–13323. doi: 10.1039/c6dt01552b
    [15] LI H F, PANG R, SUN W Z, et al. Sr1.7Zn0.3CeO4F0.2:Eu3+: novel dual-emission temperature sensors for remote, non-contact thermometric application[J]. RSC Advances, 2017, 7(16): 9645–9652. doi: 10.1039/c6ra25092k
    [16] SHI L L, LI C Y, SU Q. Temperature-dependent photoluminescence properties of Sr2CeO4:Eu3+ and its modi-fication for use in fluorescence thermometry[J]. Optics Letters, 2011, 36(4): 582–584. doi: 10.1364/OL.36.000582
    [17] 张洪杰, 李成宇, 周亮, 等. 稀土发光材料及器件的制备与应用[C]//第七届全国稀土发光材料学术研讨会会议论文摘要集. 2011.

    ZHANG H J, LI C Y, ZHOU L, et al. Preparation and application of rare earth luminescent materials and devices [C]//Proceedings of the 7th National Conference on rare earth luminescent materials. 2011.
    [18] ALLISON S W, BESHEARS D L, BENCIC T, et al. Development of temperature-sensitive paints for high-temperature aeropropulsion applications[C]//Proc of the 37th Joint Propulsion Conference and Exhibit. 2001: 3528. doi: 10.2514/6.2001-3528
    [19] FLORES-BRITO W, WESTPHAL E, WILBURN B R, et al. Study of sensitivity vs. excitation time of LED excited thermographic phosphors[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 2106. doi: 10.2514/6.2019-2106
    [20] EVSTROPIEV S K, Demidov V V, BULYGA D V, et al. YAG:R3+ (R=Ce, Dy, Yb) nanophosphor-based luminescent fibre-optic sensors for temperature measurements in the range 20–500 °C[J]. Quantum Electronics, 2022, 52(1): 94–99. doi: 10.1070/QEL17971
    [21] KONTIS K, YOSHIKAWA N. Surface thermography by laser-induced fluorescence for transient heat transfer measurements in high-speed flows[C]//Proc of the 17th Applied Aerodynamics Conference. 1999: 3170. doi: 10.2514/6.1999-3170
    [22] CHAMBERS M D, CLARKE D R. Doped oxides for high-temperature luminescence and lifetime thermometry[J]. Annual Review of Materials Research, 2009, 39: 325–359. doi: 10.1146/annurev-matsci-112408-125237
    [23] CHEPYGA L M, JOVICIC G, VETTER A, et al. Photoluminescence properties of thermographic phosphors YAG:Dy and YAG:Dy, Er doped with boron and nitrogen[J]. Applied Physics B, 2016, 122(8): 1–10. doi: 10.1007/s00340-016-6487-8
    [24] HASHEMI A, VETTER A, JOVICIC G, et al. Temperature measurements using YAG:Dy and YAG:Sm under diode laser excitation (405 nm)[J]. Measurement Science and Technology, 2015, 26(7): 075202. doi: 10.1088/0957-0233/26/7/075202
    [25] ISHIWADA N, FUJII E, YOKOMORI T. Evaluation of Dy-doped phosphors (YAG:Dy, Al2O3:Dy, and Y2SiO5:Dy) as thermographic phosphors[J]. Journal of Luminescence, 2018, 196: 492–497. doi: 10.1016/j.jlumin.2017.11.045
    [26] KLIMCZAK M, MALINOWSKI M, SARNECKI J, et al. Luminescence properties in the visible of Dy:YAG/YAG planar waveguides[J]. Journal of Luminescence, 2009, 129(12): 1869–1873. doi: 10.1016/j.jlumin.2009.04.073
    [27] REGMI A R, ALLISON S W, OLENICK K, et al. High temperature phosphor thermometry with YAG:Dy and LED excitation on flexible YSZ ceramic ribbons[J]. MRS Communications, 2021, 11(3): 322–329. doi: 10.1557/s43579-021-00046-8
    [28] ALLISON S W, BESHEARS D L, CATES M R, et al. Luminescence of YAG:Dy and YAG:Dy, Er crystals to 1700 ℃[J]. Measurement Science and Technology, 2020, 31(4): 044001. doi: 10.1088/1361-6501/ab4ebd
    [29] FLORES-BRITO W, MAHAFFEY J, VACKEL A, et al. Aerosol deposition of dysprosium-doped yttrium-aluminum-garnet for phosphor thermography applications[C]//Proc of the AIAA Scitech 2019 Forum. 2019: 2102. doi: 10.2514/6.2019-2102
  • 加载中
图(15) / 表(3)
计量
  • 文章访问数:  515
  • HTML全文浏览量:  165
  • PDF下载量:  54
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-04
  • 修回日期:  2021-12-31
  • 录用日期:  2022-01-30
  • 网络出版日期:  2022-09-13
  • 刊出日期:  2023-04-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日