留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

变密度平面叶栅风洞的设计与实现

魏巍 马护生 周晓刚 吴军强 彭强 任泽斌

魏巍,马护生,周晓刚,等. 变密度平面叶栅风洞的设计与实现[J]. 实验流体力学,2022,36(5):24-33 doi: 10.11729/syltlx20210175
引用本文: 魏巍,马护生,周晓刚,等. 变密度平面叶栅风洞的设计与实现[J]. 实验流体力学,2022,36(5):24-33 doi: 10.11729/syltlx20210175
WEI W,MA H S,ZHOU X G,et al. Design and actualization of the variable density plane cascade wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):24-33. doi: 10.11729/syltlx20210175
Citation: WEI W,MA H S,ZHOU X G,et al. Design and actualization of the variable density plane cascade wind tunnel[J]. Journal of Experiments in Fluid Mechanics, 2022,36(5):24-33. doi: 10.11729/syltlx20210175

变密度平面叶栅风洞的设计与实现

doi: 10.11729/syltlx20210175
详细信息
    作者简介:

    魏巍:(1987—),男,重庆万州人,硕士研究生,工程师。研究方向:叶轮机械气动热力学。通信地址:四川省绵阳市涪城区二环路南段6号(621000)。E-mail:nwtu@163.com

    通讯作者:

    E-mail:husheng_ma@163.com

  • 中图分类号: V231.3

Design and actualization of the variable density plane cascade wind tunnel

  • 摘要: 为满足先进涡扇发动机对变雷诺数平面叶栅试验的需求,设计了亚/跨/超声速来流高效变换、雷诺数和马赫数独立调节、压气机和涡轮平面叶栅试验为一体、换热与冷却试验能力兼具的变密度平面叶栅风洞,提出了风洞的总体设计方案。文章详细介绍了风洞引射器、半柔壁喷管及试验舱等部件设计问题,分析了流场调试及典型叶栅试验结果。调试结果表明:采用的部件设计技术实现了变密度平面叶栅风洞的主要功能,试验雷诺数可低至3.1×105 m–1,具备开展低雷诺数平面叶栅试验的能力。风洞流场调试结果满足《低速风洞和高速风洞流场品质要求》(GJB 1179A—2012),为研究亚/跨/超声速压气机和涡轮叶栅低雷诺数流动问题提供了重要试验平台。
  • 图  1  变密度平面叶栅风洞轮廓图

    Figure  1.  Sketch of the various density plane cascade wind tunnel

    图  2  风洞马赫数–雷诺数试验包线

    Figure  2.  Ma-Re test envelope of the wind tunnel

    图  3  进气调压系统简图

    Figure  3.  Sketch of the inlet pressure regulating system

    图  4  半柔壁喷管结构示意图及型线分布

    Figure  4.  Sketch of the part flexible nozzle and shaped lines

    图  5  试验舱三维结构图

    Figure  5.  Sketch of the test chamber

    图  6  试验流场CFD模拟图

    Figure  6.  CFD simulation pictures of the test flow field

    图  7  三级引射器轮廓图

    Figure  7.  Sketch of the three stages injector

    图  8  试验段不同宽度位置流场马赫数分布(Ma=0.8)

    Figure  8.  Flow field mach number distributions in different width positions

    图  9  不同宽度位置流场气流角分布(Ma=0.8)

    Figure  9.  Flow field flow angle distributions in different width positions

    图  10  栅前壁面等熵马赫数分布

    Figure  10.  Isentropic mach number distributions among the front pitch

    图  11  栅后气流角分布

    Figure  11.  Flow angle distributions among the rear pitch

    图  12  叶片表面等熵马赫数分布

    Figure  12.  Isentropic mach distributions of the blade surfaces

    表  1  风洞主要技术参数

    Table  1.   Main technical parameters of the wind tunnel

    序号参 数数 值
    1 试验段截面尺寸 190 mm×445 mm
    2 试验马赫数 0.3~1.8
    3 试验雷诺数 3.1×105~4.5×107 m−1
    4 次流温度 170~373 K
    5 稳定段总压 5~300 kPa
    6 稳定段总温 常温
    7 叶片数 ≥7
    8 典型弦长 75~120 mm
    9 气流角调节范围 0°~180°
    下载: 导出CSV

    表  2  三级引射器主要技术参数

    Table  2.   Main technical parameters of the three stages injector

    级号py/MPam/(kg﹒s–1Maypb/kPa
    1 0.25 3.96 3.6 93.6
    2 0.36 16.38 3.0 80.0
    3 0.96 79.60 2.8 20.0
    下载: 导出CSV
  • [1] 肖洪,吴虎,廉筱纯. 雷诺数对涡扇发动机性能及稳定性影响[J]. 航空动力学报,2005,20(3):394-398. doi: 10.3969/j.issn.1000-8055.2005.03.010

    XIAO H,WU H,LIAN X C. Reynolds number effects on performance and aerodynamic stabilities of the turbofan engines[J]. Journal of Aerospace Power,2005,20(3):394-398. doi: 10.3969/j.issn.1000-8055.2005.03.010
    [2] 王进,骆广琦,陶增元. 雷诺数对压气机特性及发动机稳定性影响的计算和分析[J]. 航空动力学报,2003,18(1):20-23. doi: 10.13224/j.cnki.jasp.2003.01.004

    WANG J,LUO G Q,TAO Z Y. Effects of Reynolds number on compressor performance and engine stability[J]. Journal of Aerospace Power,2003,18(1):20-23. doi: 10.13224/j.cnki.jasp.2003.01.004
    [3] MAYLE R E. The 1991 IGTI scholar lecture: the role of laminar-turbulent transition in gas turbine engines[J]. Journal of Turbomachinery,1991,113(4):509-536. doi: 10.1115/1.2929110
    [4] RHODEN H G. Effects of Reynolds number on the flow of air through a cascade of compressor blades[R]. RM 2919, 1956.
    [5] ROBERTS W B. The effect of Reynolds number and laminar separation on axial cascade performance[J]. Journal of Engineering for Power,1975,97(2):261-273. doi: 10.1115/1.3445978
    [6] IRVING A J and ROBERT O B. Aerodynamic design of axial-flow compressors[R]. NASA SP-36, 1965.
    [7] GOSTELOW J P. Cascade aerodynamics[M]. Sydney: Pergamon Press, 1984: 68-69.
    [8] BRUNNER S, FOTTNER L, SCHIFFER H P. Comparison of two highly loaded low pressure turbine cascades under the influence of wake-induced transition[C]//Proc of ASME Turbo Expo 2000: Power for Land, Sea, and Air. 2014. doi: 10.1115/2000-GT-0268
    [9] CITAVY J,NORBURY J F. The effect of Reynolds number and turbulence intensity on the performance of a compressor cascade with prescribed velocity distribution[J]. Journal of Mechanical Engineering Science,1977,19(3):93-100. doi: 10.1243/jmes_jour_1977_019_022_02
    [10] LAKE J, KING P, RIVIR R. Reduction of separation losses on a turbine blade with low Reynolds numbers[C]//Proc of the 37th Aerospace Sciences Meeting and Exhibit. 1999. doi: 10.2514/6.1999-242
    [11] WUNDERWALD D, FOTTNER L. Experimental investigation of boundary layer transition and turbulence structures on a highly loaded compressor cascade[R]. 95-GT-129, 1995.
    [12] KOCH C C,SMITH L H Jr. Loss sources and magnitudes in axial-flow compressors[J]. Journal of Engineering for Power,1976,98(3):411-424. doi: 10.1115/1.3446202
    [13] CRAIG H R M,COX H J A. Performance estimation of axial flow turbines[J]. Proceedings of the Institution of Mechanical Engineers,1970,185(1):407-424. doi: 10.1243/pime_proc_1970_185_048_02
    [14] 刘永泉,刘太秋,季路成. 航空发动机风扇/压气机技术发展的若干问题与思考[J]. 航空学报,2015,36(8):2563-2576. doi: 10.7527/S1000-6893.2015.0078

    LIU Y Q,LIU T Q,JI L C. Some problems and thoughts in the development of aero-engine fan/compressor[J]. Acta Aeronautica et Astronautica Sinica,2015,36(8):2563-2576. doi: 10.7527/S1000-6893.2015.0078
    [15] SCHREIBER H A,STEINERT W,KÜSTERS B. Effects of Reynolds number and free-stream turbulence on boundary layer transition in a compressor cascade[J]. Journal of Turbomachinery,2002,124(1):1-9. doi: 10.1115/1.1413471
    [16] SONODA T,SCHREIBER H A. Aerodynamic characteristics of supercritical outlet guide vanes at low Reynolds number conditions[J]. Journal of Turbomachinery,2007,129(4):694-704. doi: 10.1115/1.2720868
    [17] GOMES R A,STOTZ S,BLAIM F,et al. Hot-film measurements on a low pressure turbine linear cascade with bypass transition[J]. Journal of Turbomachinery,2015,137(9):091007. doi: 10.1115/1.4029967
    [18] 王文涛,王子楠,张宏武,等. 压气机静叶栅层流分离泡转捩与角区分离数值模拟与实验[J]. 航空动力学报,2017,32(9):2273-2282.

    WANG W T,WANG Z N,ZHANG H W,et al. Numerical simulation and experiment of laminar separation bubble transition and corner separation of compressor stator cascade[J]. Journal of Aerospace Power,2017,32(9):2273-2282.
    [19] 凌代军,王晖,马昌友. 低雷诺数亚声速扩压平面叶栅试验[J]. 航空动力学报,2013,28(1):171-179. doi: 10.13224/j.cnki.jasp.2013.01.024

    LING D J,WANG H,MA C Y. Subsonic compressor plane cascade experiment at low Reynolds number[J]. Journal of Aerospace Power,2013,28(1):171-179. doi: 10.13224/j.cnki.jasp.2013.01.024
    [20] 林岳峥,祝利,王海. 全球鹰无人侦察机的技术特点与应用趋势[J]. 飞航导弹,2011(9):21-24,32.
    [21] 王治敏,徐让书,赵长宇. 某叶栅风洞栅前流场的分析与改进[J]. 沈阳航空航天大学学报,2016,33(5):12-17. doi: 10.3969/j.issn.2095-1248.2016.05.003

    WANG Z M,XU R S,ZHAO C Y. Analysis and improvement of flow field in front of a cascade wind tunnel[J]. Journal of Shenyang Aerospace Ace University,2016,33(5):12-17. doi: 10.3969/j.issn.2095-1248.2016.05.003
    [22] 廖达雄,陈吉明,彭强,等. 连续式跨声速风洞设计关键技术[J]. 实验流体力学,2011,25(4):74-78. doi: 10.3969/j.issn.1672-9897.2011.04.014

    LIAO D X,CHEN J M,PENG Q,et al. Key design techniques of the low noise continuous transonic wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2011,25(4):74-78. doi: 10.3969/j.issn.1672-9897.2011.04.014
    [23] 国防科学技术工业委员会. 低速风洞和高速风洞流场品质要求: GJB 1179A—2012 [S]. 北京: 总装备部标准出版发行部, 2012.
    [24] DUNKER R,RECHTER H,STARKEN H,et al. Redesign and performance analysis of a transonic axial compressor stator and equivalent plane cascades with subsonic controlled diffusion blades[J]. Journal of Engineering for Gas Turbines and Power,1984,106(2):279-287. doi: 10.1115/1.3239560
    [25] KIOCK R,LEHTHAUS F,BAINES N C,et al. The transonic flow through a plane turbine cascade as measured in four European wind tunnels[J]. Journal of Engineering for Gas Turbines and Power,1986,108(2):277-284. doi: 10.1115/1.3239900
  • 加载中
图(12) / 表(2)
计量
  • 文章访问数:  443
  • HTML全文浏览量:  168
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-03-27
  • 录用日期:  2022-04-06
  • 刊出日期:  2022-10-01

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日