留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

背景纹影测量技术研究与应用进展

熊渊

熊渊. 背景纹影测量技术研究与应用进展[J]. 实验流体力学,2022,36(2):30-48 doi: 10.11729/syltlx20210173
引用本文: 熊渊. 背景纹影测量技术研究与应用进展[J]. 实验流体力学,2022,36(2):30-48 doi: 10.11729/syltlx20210173
XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):30-48. doi: 10.11729/syltlx20210173
Citation: XIONG Y. Recent advances in background oriented Schlieren and its applications[J]. Journal of Experiments in Fluid Mechanics, 2022,36(2):30-48. doi: 10.11729/syltlx20210173

背景纹影测量技术研究与应用进展

doi: 10.11729/syltlx20210173
基金项目: 国家自然科学青年基金(12102028);国家自然科学基金创新群体(11721202)
详细信息
    作者简介:

    熊渊:(1986—),男,湖北荆州人,博士研究生,教授。研究方向:复杂流动光学诊断与主动控制技术。通信地址:北京市海淀区学院路 37 号流体力学教育部重点实验室(100191)。E-mail:xiongyuan@buaa.edu.cn

    通讯作者:

    E-mail:xiongyuan@buaa.edu.cn

  • 中图分类号: O355

Recent advances in background oriented Schlieren and its applications

  • 摘要: 背景纹影法是2000年左右新出现的非接触式光学测量技术,可用于变密度流动的可视化和相关折射率场的定量测量。与经典的刀片式(Knife-edge)、彩虹式(Rainbow)纹影测量技术比较,BOS具有硬件搭建简单、标定方便、测量视窗不受光学元器件尺寸限制等显著优点。通过详细介绍BOS方法的基本原理与核心性能指标,并依据搭建BOS流动测量系统的思路,回顾了近年来国内外BOS技术的发展情况,最后介绍了BOS技术在超声速流动、燃烧、等离子体等复杂流动领域的应用。
  • 图  1  非均匀折射率环境下光线的传播路径示意图:图中xx' 分别对应其到达背景屏的位置、${\boldsymbol{J}}^{\rm{in}} $$ {\boldsymbol{J}}^{\rm{out}}$分别对应入射和出射的光线方向矢量

    Figure  1.  Schematic of light ray propagation within a non-uniform refractive index gas environment: x and x' corresponds to the location the rays arrive, ${\boldsymbol{J}}^{\rm{in}} $ and ${\boldsymbol{J}}^{\rm{out}} $ are the direction vector related to the incident and emergent light rays

    图  2  BOS测量时光线偏折与背景位移关系示意图,选自文献[6]图1

    Figure  2.  Relation between light deflection and background displacement in BOS method, reprinted from [6] Fig. 1

    图  3  二维BOS的典型求解流程图

    Figure  3.  A typical flow chart for solving a two-dimensional BOS problem

    图  4  BOS相关研究的逐年SCI发表数量

    Figure  4.  Yearly SCI publication number related to BOS

    图  5  2017年以来BOS相关研究所发表的期刊情况

    Figure  5.  The journal categorization on BOS research since 2017

    图  6  BOS物理分辨率示意图

    Figure  6.  Schematic demonstrating the physical resolution of a BOS system

    图  7  BOS基于光线追踪与直接数值模拟的合成实验结果:从密度到背景位移,选自文献[18]图6

    Figure  7.  Synthetic experiments based on ray-tracing and direct numerical simulation (DNS): from density to displacement field, reprinted from [18] Fig. 6

    图  8  二维远心BOS的光路布置示意图

    Figure  8.  Schematic of a two-dimensional telecentric BOS system

    图  9  激光散斑BOS技术的设置示意图,选自文献[23]图2与图5

    Figure  9.  Schematic of Laser-speckle BOS, reprinted from [23] Fig. 2 and 5

    图  10  散斑导向背景纹影系统的设置示意图,选自文献[26]图3与图4

    Figure  10.  Schematic of speckle beam-oriented BOS, reprinted from [26] Fig. 3 and 4

    图  11  色彩BOS所采用的8组背景图案,选自文献[32]图4

    Figure  11.  Eight groups of dot patterns adopted by colored BOS, reprinted from [32] Fig. 4

    图  12  与多尺度、多分辨光流法匹配的多尺度小波背景图案,选自文献[38]图1

    Figure  12.  Multi-scale wavelet background pattern compatible with the multi-scale optical flow algorithm, reprinted from [38] Fig. 1

    图  13  利用互相关算法矫正的点追踪位移预估方法流程图,选自文献[46]图1

    Figure  13.  Flow chart of particle tracking methods with cross-correlation correction, reprinted from [46] Fig. 1

    图  14  基于二维周期背景调制的扰动解调,选自文献[49]图2

    Figure  14.  Demodulation of perturbations in the framework of two-dimensional periodic background, reprinted from [49] Fig. 2

    图  15  色彩条带BOS方法所采用的双色条纹背景图案,选自文献[51]图5、6和7

    Figure  15.  Grid pattern adopted by color-grid BOS, reprinted from [51] Fig. 5, 6, and 7

    图  16  双光路消噪提升背景位移测量的信噪比,选自文献[6]图11

    Figure  16.  Rising the signal-to-noise ratio based on the dual-path strategy, reprinted from [6] Fig. 11

    图  17  推导偏转角修正因子所采用的变密度轴对称射流示意图,选自文献[58]图2

    Figure  17.  Schematic of an axisymmetric flow used for driving the correction factor for near-field deflection angle, reprinted from [58] Fig. 2

    图  18  考虑了密度梯度不确定性权重的最小二乘积分求解法,选自文献[47]封面页

    Figure  18.  Weighted least square integration methods based on the uncertainty of density gradient, reprinted from [47] cover

    图  19  轴对称BOS的直接与间接求解思路示意图,选自文献[17]图2

    Figure  19.  Direct and indirect approach for axisymmetric flows with BOS, reprinted from [17] Fig. 2

    图  20  FBP原理示意图

    Figure  20.  Schematic for FBP principles

    图  21  BOS层析重构离散空间的光线传播示意图,选自文献[68]图2

    Figure  21.  Ray tracing in the discrete voxel space with tomographic BOS, reprinted from [68] Fig. 2

    图  22  传统层析BOS重构与统一BOS重构的流程图比较,选自文献[72]图3

    Figure  22.  Comparison of the solving flowcharts between classical tomographic BOS and unified tomographic BOS, reprinted from [72] Fig. 3

    图  23  激波的强密度梯度导致的散光效应,选自文献[82]图2

    Figure  23.  Astigmatism effect resulted from the strong gradient cross the shock wavefront, reprinted from [82] Fig. 2

    图  24  超声速欠膨胀射流的BOS与纹影比较,选自文献[82]图7

    Figure  24.  Comparison between BOS and classical knife-edge Schlieren for supersonic under expansion jet, reprinted from[82] Fig. 7

    图  25  热声不稳定性发生时第二级燃料注入对火焰热释放率的影响,选自文献[93]图4

    Figure  25.  Dynamics of the sequential fuel jet with the occurrence of thermoacoustics, reprinted from [93] Fig. 4

    图  26  基于BOS与纹影研究归一化密度的时空演化特征,选自文献[99]图14

    Figure  26.  Evolution of normalized density produced by DBD plasma revealed by BOS and Schlieren, reprinted from [99] Fig. 14

    表  1  BOS与其他光学类定量测密度/温度方法比较

    Table  1.   Comparison of BOS with other optical methods for density/temperature measurements

    背景纹影刀片式纹影彩虹式纹影Planar LIFTDLASCARS
    光路校准简单中等中等繁琐简单繁琐
    测量信息二维沿程二维沿程二维沿程二维平面一维沿程单点
    后处理算法简单简单简单中等繁琐繁琐
    硬件要求经济经济经济昂贵中等昂贵
    高维拓展简单困难困难困难简单困难
    时间分辨率
    恶劣环境下的鲁棒性
    测量精度
    空间分辨率
    下载: 导出CSV

    表  2  超声速流动中BOS方法的应用。

    Table  2.   Applications of BOS in super/hypersonic flows

    研究者马赫数流动类型
    Elsinga[7]2.0Prandtl-Meyer膨胀波
    Fisher[9]5.0轴对称裙锥
    Ota[20]2.0轴对称锥形钝体
    Cozzi[21]1.8超声速欠膨胀射流
    Sourgen[32]2.0~3.0突刺钝体
    Rajendran[47]2.5轴对称锥形钝体
    Ota[51]2.0非对称锥形钝体
    Venkatakrishnan[56]2.0轴对称锥形钝体
    Venkatakrishnan[66]1.26~3.0光学玻璃窗
    Heineck[74]1.02,1.08超声速全尺寸战斗机
    Tipnis[75]1.223不同喷嘴的超声速射流
    Ota[76]2.0超声速横向射流
    Ramanah[77]6.3~10钝体与MUSES-C返回舱
    王成鹏团队[78]2.7吸气式高超飞行器
    易仕和团队[79-81]3.4~3.8,6.0圆柱与椭圆锥
    下载: 导出CSV
  • [1] SETTLES G S,COVERT E E. Schlieren and shadowgraph techniques: visualizing phenomena in transport media[J]. Applied Mechanics Reviews,2002,55(4):B76-B77. doi: 10.1115/1.1483362
    [2] 李桂春. 气动光学[M]. 北京: 国防工业出版社, 2006.

    LI G C. Aero-optics[M]. Beijing: National Defense Industry Press, 2006.
    [3] DALZIEL S B,HUGHES G O,SUTHERLAND B R. Whole-field density measurements by :“synthetic schlieren”[J]. Experiments in Fluids,2000,28(4):322-335. doi: 10.1007/s003480050391
    [4] RICHARD H,RAFFEL M. Principle and applications of the background oriented schlieren (BOS) method[J]. Measurement Science and Technology,2001,12(9):1576-1585. doi: 10.1088/0957-0233/12/9/325
    [5] MEIER G. Computerized background-oriented Schlieren[J]. Experiments in Fluids,2002,33(1):181-187. doi: 10.1007/s00348-002-0450-7
    [6] XIONG Y,WEILENMANN M,NOIRAY N. Analysis and reduction of spurious displacements in high-framing-rate background-oriented Schlieren[J]. Experiments in Fluids,2020,61(2):1-12. doi: 10.1007/s00348-020-2879-y
    [7] ELSINGA G E,OUDHEUSDEN B W,SCARANO F,et al. Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren[J]. Experiments in Fluids,2004,36(2):309-325. doi: 10.1007/s00348-003-0724-8
    [8] KAGANOVICH D,JOHNSON L A,MAMONAU A A,et al. Benchmarking background oriented schlieren against interferometric measurement using open source tools[J]. Applied Optics,2020,59(30):9553. doi: 10.1364/ao.406301
    [9] FISHER T B,QUINN M K,SMITH K L. An experimental sensitivity comparison of the schlieren and background-oriented schlieren techniques applied to hypersonic flow[J]. Measurement Science and Technology,2019,30(6):065202. doi: 10.1088/1361-6501/ab1582
    [10] HARGATHER M J,SETTLES G S. A comparison of three quantitative schlieren techniques[J]. Optics and Lasers in Engineering,2012,50(1):8-17. doi: 10.1016/j.optlaseng.2011.05.012
    [11] RAFFEL M. Background-oriented schlieren (BOS) tech-niques[J]. Experiments in Fluids,2015,56(3):1-17. doi: 10.1007/s00348-015-1927-5
    [12] SETTLES G S,HARGATHER M J. A review of recent developments in schlieren and shadowgraph techniques[J]. Measurement Science and Technology,2017,28(4):042001. doi: 10.1088/1361-6501/aa5748
    [13] CAI S Z,WANG Z C,FUEST F,et al. Flow over an espresso cup: inferring 3-D velocity and pressure fields from tomographic background oriented Schlieren via physics-informed neural networks[J]. Journal of Fluid Mechanics,2021,915:A102. doi: 10.1017/jfm.2021.135
    [14] GOJANI A B,KAMISHI B,OBAYASHI S. Measurement sensitivity and resolution for background oriented schlieren during image recording[J]. Journal of Visualization,2013,16(3):201-207. doi: 10.1007/s12650-013-0170-5
    [15] GOLDHAHN E,SEUME J. The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field[J]. Experiments in Fluids,2007,43(2-3):241-249. doi: 10.1007/s00348-007-0331-1
    [16] LANG H M,OBERLEITHNER K,PASCHEREIT C O,et al. Measurement of the fluctuating temperature field in a heated swirling jet with BOS tomography[J]. Experiments in Fluids,2017,58(7):1-21. doi: 10.1007/s00348-017-2367-1
    [17] XIONG Y,KAUFMANN T,NOIRAY N. Towards robust BOS measurements for axisymmetric flows[J]. Experi-ments in Fluids,2020,61(8):1-12. doi: 10.1007/s00348-020-03007-4
    [18] RAJENDRAN L K,BANE S P M,VLACHOS P P. PIV/BOS synthetic image generation in variable density environments for error analysis and experiment design[J]. Measurement Science and Technology,2019,30(8):085302. doi: 10.1088/1361-6501/ab1ca8
    [19] AMJAD S,KARAMI S,SORIA J,et al. Assessment of three-dimensional density measurements from tomographic background-oriented schlieren (BOS)[J]. Measurement Science and Technology,2020,31(11):114002. doi: 10.1088/1361-6501/ab955a
    [20] OTA M,LEOPOLD F,NODA R,et al. Improvement in spatial resolution of background-oriented schlieren tech-nique by introducing a telecentric optical system and its application to supersonic flow[J]. Experiments in Fluids,2015,56(3):1-10. doi: 10.1007/s00348-015-1919-5
    [21] COZZI F,GÖTTLICH E,ANGELUCCI L,et al. Development of a background-oriented schlieren technique with telecentric lenses for supersonic flow[J]. Journal of Physics: Conference Series,2017,778:012006. doi: 10.1088/1742-6596/778/1/012006
    [22] COZZI F,GÖTTLICH E. Enhanced background oriented schlieren (EBOS)[J]. Journal of Physics: Conference Series,2019,1249(1):012017. doi: 10.1088/1742-6596/1249/1/012017
    [23] MEIER A H,ROESGEN T. Improved background oriented schlieren imaging using laser speckle illumination[J]. Experiments in Fluids,2013,54(6):1-6. doi: 10.1007/s00348-013-1549-8
    [24] GOODMAN J W. Speckle phenomena in optics: theory and applications[M]. Englewood: Roberts&Company, 2006. doi: 10.1117/3.2548484
    [25] MICHALSKI Q,BENITO PAREJO C J,CLAVERIE A,et al. An application of speckle-based background oriented schlieren for optical calorimetry[J]. Experimental Thermal and Fluid Science,2018,91:470-478. doi: 10.1016/j.expthermflusci.2017.09.012
    [26] NAKAMURA Y,SUZUKI T,KINEFUCHI K,et al. Speckle beam-oriented schlieren technique[J]. Experiments in Fluids,2021,62(1):1-11. doi: 10.1007/s00348-020-03113-3
    [27] RAFFEL M, WILLERT C E, SCARANO F, et al. Particle Image Velocimetry[M]. Cham: Springer International Publi-shing, 2018. doi: 10.1007/978-3-319-68852-7
    [28] RAFFEL M,RICHARD H,MEIER G. On the applicability of background oriented optical tomography for large scale aerodynamic investigations[J]. Experiments in Fluids,2000,28(5):477-481. doi: 10.1007/s003480050408
    [29] SCARANO F. Iterative image deformation methods in PIV[J]. Measurement Science and Technology,2002,13(1):R1-R19. doi: 10.1088/0957-0233/13/1/201
    [30] ROESGEN T. Optimal subpixel interpolation in particle image velocimetry[J]. Experiments in Fluids,2003,35(3):252-256. doi: 10.1007/s00348-003-0627-8
    [31] WESTERWEEL J. Fundamentals of digital particle image velocimetry[J]. Measurement Science and Technology,1997,8(12):1379-1392. doi: 10.1088/0957-0233/8/12/002
    [32] SOURGEN F,LEOPOLD F,KLATT D. Reconstruction of the density field using the Colored Background Oriented Schlieren Technique (CBOS)[J]. Optics and Lasers in Engineering,2012,50(1):29-38. doi: 10.1016/j.optlaseng.2011.07.012
    [33] LEOPOLD F,OTA M,KLATT D,et al. Reconstruction of the unsteady supersonic flow around a spike using the colored background oriented schlieren technique[J]. Journal of Flow Control, Measurement & Visualization,2013,1(2):69-76. doi: 10.4236/jfcmv.2013.12009
    [34] LEOPOLD F, KLATT D, OTA M, et al. Reconstruction of density fields of supersonic flows using an improved Schlieren technique[C]//Proc of the Electro-Optical Remote Sensing XIII . 2019. doi: 10.1117/12.2533463
    [35] GARDNER A D,RAFFEL M,SCHWARZ C,et al. Reference-free digital shadowgraphy using a moving BOS background[J]. Experiments in Fluids,2020,61(2):1-5. doi: 10.1007/s00348-019-2865-4
    [36] WERNET M P. Real-time background oriented schlieren with self-illuminated speckle background[J]. Measurement Science and Technology,2020,31(1):017001. doi: 10.1088/1361-6501/ab4211
    [37] REICHENZER F,SCHNEIDER M,HERKOMMER A. Improvement in systematic error in background-oriented schlieren results by using dynamic backgrounds[J]. Experiments in Fluids,2021,62(9):1-18. doi: 10.1007/s00348-021-03285-6
    [38] ATCHESON B,HEIDRICH W,IHRKE I. An evaluation of optical flow algorithms for background oriented schlieren imaging[J]. Experiments in Fluids,2009,46(3):467-476. doi: 10.1007/s00348-008-0572-7
    [39] LUCAS B D, KANADE T. Iterative image registration technique with an application to stereo vision[C]//Proc of Proceedings of the International Joint Conference on Artifical Intelligence. 1981. doi: 10.5555/1623264.1623280
    [40] HORN B K P,SCHUNCK B G. Determining optical flow[J]. Artificial Intelligence,1981,17(1-3):185-203. doi: 10.1016/0004-3702(81)90024-2
    [41] BROX T, BRUHN A, PAPENBERG N, et al. High accuracy optical flow estimation based on a theory for warping[C]//Proc of Computer Vision – ECCV. 2004. doi: 10.1007/978-3-540-24673-2_3
    [42] LETELIER J A,HERRERA P,MUJICA N,et al. Enhancement of synthetic schlieren image resolution using total variation optical flow: application to thermal experiments in a Hele-Shaw cell[J]. Experiments in Fluids,2016,57(2):1-14. doi: 10.1007/s00348-015-2109-1
    [43] SCHMIDT B E,WOIKE M R. Wavelet-based optical flow analysis for background-oriented schlieren image proce-ssing[J]. AIAA Journal,2021:1-8. doi: 10.2514/1.j060218
    [44] ZHANG X Y,WANG L M,LIU B,et al. Hybrid adaptive wavelet-based optical flow algorithm for background oriented schlieren (BOS) experiments[J]. Mathematical Pr lems in Engineering ,2020,2020:5138153. doi: 10.1155/2020/5138153
    [45] RAJENDRAN L K,BANE S P M,VLACHOS P P. Correction to: dot tracking methodology for background-oriented schlieren (BOS)[J]. Experiments in Fluids,2020,61(8):1. doi: 10.1007/s00348-020-03029-y
    [46] CHARRUAULT F, GREIDANUS A, WESTERWEEL J. A Dot Tracking Algorithm To Measure Free Surface Deformations[C]. Proc of 18th International Symposium on Flow Visualization. 2018.
    [47] RAJENDRAN L,ZHANG J C,BANE S,et al. Uncertainty-based weighted least squares density integration for background-oriented schlieren[J]. Experi-ments in Fluids,2020,61(11):1-12. doi: 10.1007/s00348-020-03071-w
    [48] BARINOV Y A. A new method of processing background oriented schlieren images[J]. Technical Physics Letters,2019,45(6):632-634. doi: 10.1134/s106378501906021x
    [49] WILDEMAN S. Real-time quantitative Schlieren imaging by fast Fourier demodulation of a checkered backdrop[J]. Experiments in Fluids,2018,59(6):1-13. doi: 10.1007/s00348-018-2553-9
    [50] ZOU N, SONG Y. Research of background-oriented schlieren based on two-dimensional de Bruijn sequence color coding technology[C]//Proc of the AOPC 2019: Optical Sensing and Imaging Technology. 2019: 107. doi: 10.1117/12.2547580
    [51] OTA M,HAMADA K,KATO H,et al. Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique[J]. Measurement Science and Technology,2011,22(10):104011. doi: 10.1088/0957-0233/22/10/104011
    [52] OTA M, LEOPOLD F, JAGUSINSKI F, et al. Comparison between CBOS (colored background oriented Schlieren) and CGBOS (colored-grid background oriented Schlieren) for supersonic[C]//Proc of 15th International Symposium on Flow Visualization. 2012.
    [53] RAMAIAH J,AJITHAPRASAD S,GANNAVARPU R,et al. Fast and robust method for flow analysis using GPU assisted diffractive optical element based background oriented schlieren (BOS)[J]. Optics and Lasers in Engineering,2020,126:105908. doi: 10.1016/j.optlaseng.2019.105908
    [54] ZHU Y W, SONG Y, QU X J, et al. Quantitative measurement of colored-fringe background oriented schliecxren based on three-step phase shifting[C]//Proc of the Optical Metrology and Inspection for Industrial Applications V. 2018: 63. doi: 10.1117/12.2500908
    [55] TOKGOZ S,GEISLER R,VAN BOKHOVEN L J A,et al. Temperature and velocity measurements in a fluid layer using background-oriented schlieren and PIV methods[J]. Measurement Science and Technology,2012,23(11):115302. doi: 10.1088/0957-0233/23/11/115302
    [56] VENKATAKRISHNAN L,MEIER G. Density measure-ments using the Background Oriented Schlieren technique[J]. Experiments in Fluids,2004,37(2):237-247. doi: 10.1007/s00348-004-0807-1
    [57] WEILENMANN M,XIONG Y,NOIRAY N. On the dispersion of entropy waves in turbulent flows[J]. Journal of Fluid Mechanics,2020,903:R1. doi: 10.1017/jfm.2020.703
    [58] VAN HINSBERG N P,RÖSGEN T. Density measure-ments using near-field background-oriented Schlieren[J]. Experiments in Fluids,2014,55(4):1-11. doi: 10.1007/s00348-014-1720-x
    [59] DING H L,YI S H,ZHAO X H. Experimental investigation of aero-optics induced by supersonic film based on near-field background-oriented schlieren[J]. Applied Optics,2019,58(11):2948. doi: 10.1364/ao.58.002948
    [60] HASHIMOTO Y,FUJII K,KAMEDA M. Modified application of algebraic reconstruction technique to near-field background-oriented schlieren images for three-dimensional flows[J]. Transactions of the Japan Society for Aeronautical and Space Sciences,2017,60(2):85-92. doi: 10.2322/tjsass.60.85
    [61] GUO G M,LIU H. Density and temperature reconstruction of a flame-induced distorted flow field based on background-oriented schlieren (BOS) technique[J]. Chinese Physics B,2017,26(6):064701. doi: 10.1088/1674-1056/26/6/064701
    [62] TAN D J,EDGINGTON-MITCHELL D,HONNERY D. Measurement of density in axisymmetric jets using a novel background-oriented schlieren (BOS) technique[J]. Experi-ments in Fluids,2015,56(11):1-11. doi: 10.1007/s00348-015-2076-6
    [63] OHNO H,TOYA K. Scalar potential reconstruction method of axisymmetric 3D refractive index fields with background-oriented schlieren[J]. Optics Express,2019,27(5):5990. doi: 10.1364/oe.27.005990
    [64] KLEMKOWSKY J N,FAHRINGER T W,CLIFFORD C J,et al. Plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology,2017,28(9):095404. doi: 10.1088/1361-6501/aa7f3d
    [65] KLEMKOWSKY J N,CLIFFORD C J,BATHEL B F,et al. A direct comparison between conventional and plenoptic background oriented schlieren imaging[J]. Measurement Science and Technology,2019,30(6):064001. doi: 10.1088/1361-6501/ab1837
    [66] VENKATAKRISHNAN L,SURIYANARAYANAN P. Density field of supersonic separated flow past an afterbody nozzle using tomographic reconstruction of BOS data[J]. Experiments in Fluids,2009,47(3):463-473. doi: 10.1007/s00348-009-0676-8
    [67] SOURGEN F, HAERTIG J, REY C. Comparison between background oriented schlieren measurements (BOS) and numerical simulations[C]//Proc of the 24th AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2004: 1–18. doi: 10.2514/6.2004-2602
    [68] NICOLAS F,TODOROFF V,PLYER A,et al. A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measure-ments[J]. Experiments in Fluids,2015,57(1):1-21. doi: 10.1007/s00348-015-2100-x
    [69] ATCHESON B,IHRKE I,HEIDRICH W,et al. Time-resolved 3d capture of non-stationary gas flows[J]. ACM Transactions on Graphics,2008,27(5):1-9. doi: 10.1145/1409060.1409085
    [70] GRAUER S J,UNTERBERGER A,RITTLER A,et al. Instantaneous 3D flame imaging by background-oriented schlieren tomography[J]. Combustion and Flame,2018,196:284-299. doi: 10.1016/j.combustflame.2018.06.022
    [71] HARTMANN U,SEUME J R. Combining ART and FBP for improved fidelity of tomographic BOS[J]. Measurement Science and Technology,2016,27(9):097001. doi: 10.1088/0957-0233/27/9/097001
    [72] GRAUER S J,STEINBERG A M. Fast and robust volumetric refractive index measurement by unified background-oriented schlieren tomography[J]. Experi-ments in Fluids,2020,61(3):1-17. doi: 10.1007/s00348-020-2912-1
    [73] WANG Q,YU T,LIU H C,et al. Optimization of camera arrangement for volumetric tomography with constrained optical access[J]. Journal of the Optical Society of America B,2020,37(4):1231. doi: 10.1364/josab.385291
    [74] HEINECK J T,BANKS D W,SMITH N T,et al. Background-oriented schlieren imaging of supersonic aircraft in flight[J]. AIAA Journal,2020,59(1):11-21. doi: 10.2514/1.J059495
    [75] TIPNIS T J,FINNIS M V,KNOWLES K,et al. Density measurements for rectangular free jets using background-oriented schlieren[J]. The Aeronautical Journal,2013,117(1194):771-785. doi: 10.1017/s0001924000008447
    [76] OTA M,KURIHARA K,AKI K,et al. Quantitative density measurement of the lateral jet/cross-flow interaction field by colored-grid background oriented schlieren (CGBOS) technique[J]. Journal of Visualization,2015,18(3):543-552. doi: 10.1007/s12650-015-0297-7
    [77] RAMANAH D,RAGHUNATH S,MEE D J,et al. Background oriented schlieren for flow visualisation in hypersonic impulse facilities[J]. Shock Waves,2007,17(1-2):65-70. doi: 10.1007/s00193-007-0097-7
    [78] WANG C P,XU P,XUE L S,et al. Three-dimensional reconstruction of incident shock/boundary layer interaction using background-oriented schlieren[J]. Acta Astronau-tica,2019,157:341-349. doi: 10.1016/j.actaastro.2019.01.002
    [79] 赵玉新,易仕和,田立丰,等. 超声速混合层气动光学畸变与抖动: BOS测量技术及其应用[J]. 中国科学G辑,2010,40(1):33-46. doi: 10.1016/j.actaastro.2019.01.002
    [80] 冈敦殿,易仕和,米琦,等. 超声速湍流边界层与圆柱相互作用实验研究[J]. 航空学报,2022,43(1):626104. doi: 10.7527/S1000-6893.2021.26104

    GANG D D,YI S H,MI Q,et al. , Experimental study on the interaction between supersonic turbulent boundary layer and cylinder[J]. Acta Aeronautica et Astronautica Sinica,2022,43(1):626104. doi: 10.7527/S1000-6893.2021.26104
    [81] 郑文鹏,易仕和,牛海波,等. 高超声速4∶1椭圆锥横流不稳定性实验研究[J]. 物理学报,2021,70(24):244702. doi: 10.7498/aps.70.20210807

    ZHENG W P,YI S H,NIU H B,et al. Experimental research on crossflow instability for a hypersonic 4∶1 elliptic cone[J]. Acta Physica Sinica,2021,70(24):244702. doi: 10.7498/aps.70.20210807
    [82] NICOLAS F,DONJAT D,LÉON O,et al. 3D reconstruction of a compressible flow by synchronized multi-camera BOS[J]. Experiments in Fluids,2017,58(5):1-15. doi: 10.1007/s00348-017-2325-y
    [83] LUO H W,KUSUNOSE J,PINTON G,et al. Rapid quantitative imaging of high intensity ultrasonic pressure fields[J]. The Journal of the Acoustical Society of America,2020,148(2):660. doi: 10.1121/10.0001689
    [84] WEILENMANN M,DOLL U,BOMBACH R,et al. Linear and nonlinear entropy-wave response of technically-premixed jet-flames-array and swirled flame to acoustic forcing[J]. Proceedings of the Combustion Institute,2021,38(4):6135-6143. doi: 10.1016/j.proci.2020.06.233
    [85] ZHANG G Y,WANG G Q,HUANG Y,et al. Reconstruction and simulation of temperature and CO2 concentration in an axisymmetric flame based on TDLAS[J]. Optik,2018,170:166-177. doi: 10.1016/j.ijleo.2018.05.123
    [86] GAO Y,BOHLIN A,SEEGER T,et al. In situ determination of N2 broadening coefficients in flames for rotational CARS thermometry[J]. Proceedings of the Combustion Institute,2013,34(2):3637-3644. doi: 10.1016/j.proci.2012.05.010
    [87] QIN X,XIAO X D,PURI I K,et al. Effect of varying composition on temperature reconstructions obtained from refractive index measurements in flames[J]. Combustion and Flame,2002,128(1-2):121-132. doi: 10.1016/S0010-2180(01)00338-8
    [88] IFFA E D,AZIZ A R A,MALIK A S. Gas flame temperature measurement using background oriented schlieren[J]. Journal of Applied Sciences,2011,11(9):1658-1662. doi: 10.3923/jas.2011.1658.1662
    [89] 王根娟,杨臧健,孟晟,等. 背景纹影定量化在层流轴对称火焰温度场测量中的应用研究[J]. 实验流体力学,2016,30(2):103-110. doi: 10.11729/syltlx20150083

    WANG G J,YANG Z J,MENG S,et al. Application of quantitative background oriented schlieren in laminar axisymmetric flame temperature measurement[J]. Journal of Experiments in Fluid Mechanics,2016,30(2):103-110. doi: 10.11729/syltlx20150083
    [90] 孟晟,杨臧健,王明晓,等. 纹影定量化在火焰温度测量中的应用[J]. 实验流体力学,2015,29(4):65-69. doi: 10.11729/syltlx20140117

    MENG S,YANG Z J,WANG M X,et al. Application of quantitative schlieren method in flame temperature measurement[J]. Journal of Experiments in Fluid Mecha-nics,2015,29(4):65-69. doi: 10.11729/syltlx20140117
    [91] LIU H C,HUANG J Q,LI L,et al. Volumetric imaging of flame refractive index, density, and temperature using background-oriented Schlieren tomography[J]. Science China Technological Sciences,2021,64(1):98-110. doi: 10.1007/s11431-020-1663-5
    [92] LIU H C,SHUI C Y,CAI W W. Time-resolved three-dimensional imaging of flame refractive index via endoscopic background-oriented Schlieren tomography using one single camera[J]. Aerospace Science and Technology,2020,97:105621. doi: 10.1016/j.ast.2019.105621
    [93] WEILENMANN M, XIONG Y, BOTHIEN M, et al. Background oriented schlieren of fuel jet flapping under thermoacoustic oscillations in a sequential combustor[C]//Proceedings of ASME Turbo Expo 2018: Turboma-chinery Technical Conference and Exposition. 2018. doi: 10.1115/GT2018-75517
    [94] 吴云,李应红. 等离子体流动控制研究进展与展望[J]. 航空学报,2015,36(2):381-405. doi: 10.7527/S1000-6893.2014.0246

    WU Y,LI Y H. Progress and outlook of plasma flow control[J]. Acta Aeronautica et Astronautica Sinica,2015,36(2):381-405. doi: 10.7527/S1000-6893.2014.0246
    [95] TRALDI E,BOSELLI M,SIMONCELLI E,et al. Schlieren imaging: a powerful tool for atmospheric plasma diagnos-tic[J]. EPJ Techniques and Instrumentation,2018,5:4. doi: 10.1140/epjti/s40485-018-0045-1
    [96] JIN J,MURSENKOVA I V,SYSOEV N N,et al. Experimental investigation of blast waves from plasma sheet using the background oriented schlieren and shadow methods[J]. Journal of Flow Visualization and Image Processing,2011,18(4):311-328. doi: 10.1615/jflowvisimageproc.2012004373
    [97] BLUNCK D L,KIEL B V,GOSS L,et al. Spatial development and temperature of spark kernels exiting into quiescent air[J]. Journal of Propulsion and Power,2012,28(3):458-465. doi: 10.2514/1.B34131
    [98] WANG Q S,GENG J H,WANG P,et al. Measurement of discharge channel based on background oriented schlieren technique using an optimized algorithm[J]. AIP Advances,2021,11(6):065114. doi: 10.1063/5.0049042
    [99] KOMURO A,OGURA N,ITO M,et al. Visualization of density variations produced by alternating-current dielectric-barrier-discharge plasma actuators using the background-oriented schlieren method[J]. Plasma Sources Science and Technology,2019,28(5):055002. doi: 10.1088/1361-6595/ab1465
    [100] SINGH B,RAJENDRAN L K,ZHANG J C,et al. Vortex rings drive entrainment and cooling in flow induced by a spark discharge[J]. Physical Review Fluids,2020,5(11):114501. doi: 10.1103/physrevfluids.5.114501
    [101] RAJENDRAN L K,SINGH B,VLACHOS P P,et al. Filamentary surface plasma discharge flow length and time scales[J]. Journal of Physics D:Applied Physics,2021,54(20):205201. doi: 10.1088/1361-6463/abe66a
    [102] KANEKO Y,NISHIDA H,TAGAWA Y. Background-oriented schlieren measurement of near-surface density field in surface dielectric-barrier-discharge[J]. Measurement Science and Technology,2021,32(12):125402. doi: 10.1088/1361-6501/ac1ccc
  • 加载中
图(26) / 表(2)
计量
  • 文章访问数:  3338
  • HTML全文浏览量:  1715
  • PDF下载量:  449
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-11-02
  • 修回日期:  2022-02-17
  • 录用日期:  2022-02-18
  • 网络出版日期:  2022-05-26
  • 刊出日期:  2022-05-19

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日