留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

超声速火焰的3DLIF可视化技术研究

袁勋 于欣 彭江波 秦飞 刘冰 曹振 高龙 韩明宏

袁勋,于欣,彭江波,等. 超声速火焰的3DLIF可视化技术研究[J]. 实验流体力学,2022,36(4):30-36 doi: 10.11729/syltlx20210150
引用本文: 袁勋,于欣,彭江波,等. 超声速火焰的3DLIF可视化技术研究[J]. 实验流体力学,2022,36(4):30-36 doi: 10.11729/syltlx20210150
YUAN X,YU X,PENG J B,et al. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):30-36. doi: 10.11729/syltlx20210150
Citation: YUAN X,YU X,PENG J B,et al. Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):30-36. doi: 10.11729/syltlx20210150

超声速火焰的3DLIF可视化技术研究

doi: 10.11729/syltlx20210150
基金项目: 黑龙江省自然科学基金(LH2021F028)
详细信息
    作者简介:

    袁勋:(1997—),男,山东菏泽人,博士研究生。研究方向:激光光谱诊断技术。通信地址:黑龙江省哈尔滨市南岗区一匡街2号哈尔滨工业大学科学园航天学院可调谐激光技术国家重点实验室(150001)。E-mail:yx1997111@163.com

    通讯作者:

    E-mail:13936344559@126.com

  • 中图分类号: TN27

Study on visualization of supersonic flame using Three Dimensional Laser–Induced Fluorescence (3DLIF)

  • 摘要: 为满足超燃冲压发动机燃烧诊断尤其是燃烧空间结构可视化的迫切需求,亟需实现超声速火焰三维测量。三维激光诱导荧光(3DLIF)技术作为一种立体测量技术具有超声速火焰三维测量的潜力。利用该技术的特点与优势,设计了基于扫描振镜的多平面3DLIF成像系统,在超声速同轴射流燃烧试验装置上实现了超声速火焰的多平面3DLIF空间结构可视化。为了实现大尺寸成像,提出了一种扩大扫描范围的片光整形方案,利用该方案获得了空间尺度50 mm×85 mm×20 mm、时间尺度5 ms的超声速火焰平均三维图像,对3DLIF技术用于超燃冲压发动机试验台架燃烧空间结构可视化进行了可行性分析,基于时均三维图像讨论了喷口火焰速度对火焰结构形状的影响。
  • 图  1  三维激光诱导荧光成像系统

    Figure  1.  3DLIF imaging system

    图  2  扫描振镜与片光整形方案

    Figure  2.  Scanning galvanometer and laser sheet shaping scheme

    图  3  片光整形方案(俯视图)

    Figure  3.  Laser sheet shaping scheme(top view)

    图  4  三维重构流程图

    Figure  4.  3D reconstruction flow chart

    图  5  超声速同轴射流燃烧试验装置

    Figure  5.  Schematic diagram of supersonic coaxial jet combustion

    图  6  片光位置

    Figure  6.  The location of laser sheet

    图  7  一次扫描过程各位置的OH–PLIF图像

    Figure  7.  OH–PLIF images of one scanning process

    图  8  火焰三维图像

    Figure  8.  3D image of flame

    图  9  不同火焰速度的空间结构图

    Figure  9.  Spatial structure diagrams of different flame speed

    表  1  工况表

    Table  1.   Working condition

    乙烯流量
    /(L·min−1
    空气流量
    /(L·min−1
    主流压力
    /Pa
    火焰速度
    4.6 114.0 101325 Ma=0.8
    202650 Ma=1.1
    303975 Ma=1.4
    405300 Ma=1.7
    下载: 导出CSV
  • [1] 金台. 超声速湍流燃烧多物理耦合的直接数值模拟研究[D]. 杭州: 浙江大学, 2015.

    JIN T. Direct numerical simulation of coupled multi-physics in supersonic turbulent combustion[D]. Hangzhou: Zhejiang University, 2015.
    [2] 朱家健,万明罡,吴戈,等. 激光诱导荧光技术燃烧诊断的研究进展[J]. 中国激光,2021,48(4):0401005. doi: 10.3788/CJL202148.0401005

    ZHU J J,WAN M G,WU G,et al. Research progress of laser-induced fluorescence technology in combustion diagno-stics[J]. Chinese Journal of Lasers,2021,48(4):0401005. doi: 10.3788/CJL202148.0401005
    [3] 吴戈,李韵,万明罡,等. 平面激光诱导荧光技术在超声速燃烧火焰结构可视化中的应用[J]. 实验流体力学,2020,34(3):70-77. doi: 10.11729/syltlx20190168

    WU G,LI Y,WAN M G,et al. Visualization of flame structure in supersonic combustion by Planar Laser Induced Fluorescence technique[J]. Journal of Experiments in Fluid Mechanics,2020,34(3):70-77. doi: 10.11729/syltlx20190168
    [4] PRASAD R R,SREENIVASAN K R. Quantitative three-dimensional imaging and the structure of passive scalar fields in fully turbulent flows[J]. Journal of Fluid Mechanics,1990,216:1-34. doi: 10.1017/s0022112090000325
    [5] CHO K Y, SATIJA A, POURPOINT T L, et al. Time-resolved 3D OH planar laser-induced fluorescence system for multiphase combustion[C]//Proc of the 8th US National Combustion Meeting. 2013.
    [6] WELLANDER R,RICHTER M,ALDÉN M. Time resolved,3D imaging (4D) of two phase flow at a repetition rate of 1 kHz[J]. Optics Express,2011,19(22):21508-21514. doi: 10.1364/OE.19.021508
    [7] XU W J,LIU N,MA L. Super resolution PLIF demon-strated in turbulent jet flows seeded with I2[J]. Optics & Laser Technology,2018,101:216-222. doi: 10.1016/j.optlastec.2017.11.024
    [8] 黄真理,周维虎,曲兆松. 三维激光诱导荧光(3DLIF)技术及测量水体标量场设备研究[J]. 实验流体力学,2017,31(5):1-14. doi: 10.11729/syltlx20160173

    HUANG Z L,ZHOU W H,QU Z S. Study on three dimensional laser-induced fluorescence (3DLIF) techniques and its instrument[J]. Journal of Experiments in Fluid Mechanics,2017,31(5):1-14. doi: 10.11729/syltlx20160173
    [9] WELLANDER R,RICHTER M,ALDÉN M. Time-resolved(kHz) 3D imaging of OH PLIF in a flame[J]. Experiments in Fluids,2014,55(6):1-12. doi: 10.1007/s00348-014-1764-y
    [10] KRISTENSSON E,LI Z M,BERROCAL E,et al. Instantaneous 3D imaging of flame species using coded laser illumination[J]. Proceedings of the Combustion Institute,2017,36(3):4585-4591. doi: 10.1016/j.proci.2016.08.040
    [11] LI T,PAREJA J,FUEST F,et al. Tomographic imaging of OH laser-induced fluorescence in laminar and turbulent jet flames[J]. Measurement Science and Technology,2018,29(1):015206. doi: 10.1088/1361-6501/aa938a
    [12] HALLS B R, JIANG N B, THUL D J, et al. High-speed, three-dimensional tomographic imaging of concentration fields in turbulent flows[C]//Proc of the Conference on Lasers and Electro-Optics. 2016. doi: 10.1364/cleo_at.2016.aw4k.2
    [13] MA L, XU W J, LEI Q C, et al. Single-shot 3D flame imaging using CH-based VLIF (volumetric laser induced fluorescence)[C]//Proc of the 32nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference. 2016. doi: 10.2514/6.2016-4028
    [14] PENG J B,CAO Z,YU X,et al. Analysis of combustion instability of hydrogen fueled scramjet combustor on high-speed OH-PLIF measurements and dynamic mode decompo-sition[J]. International Journal of Hydrogen Energy,2020,45(23):13108-13118. doi: 10.1016/j.ijhydene.2020.02.216
    [15] YU X,CAO Z,PENG J B,et al. Statistical analysis of flame oscillation characterization of oxy-fuel in heavy oil boiler using OH planar laser-induced fluorescence[J]. Journal of Spectroscopy,2019,2019:7085232. doi: 10.1155/2019/7085232
    [16] MILLER V A,TROUTMAN V A,HANSON R K. Near-kHz 3D tracer-based LIF imaging of a co-flow jet using toluene[J]. Measurement Science and Technology,2014,25(7):075403. doi: 10.1088/0957-0233/25/7/075403
    [17] 刘冰,何国强,秦飞. 乙烯高速射流点火过程试验研究[J]. 实验流体力学,2018,32(2):24-27. doi: 10.11729/syltlx20180003

    LIU B,HE G Q,QIN F. Experimental study on ignition process for ethylene high speed jet[J]. Journal of Experi-ments in Fluid Mechanics,2018,32(2):24-27. doi: 10.11729/syltlx20180003
    [18] McRAE C D,JOHANSEN C T,DANEHY P M,et al. Image analysis of hydroxyl-radical planar laser-induced fluorescence in turbulent supersonic combustion[J]. Journal of Propulsion and Power,2016,32(3):542-559. doi: 10.2514/1.b35611
    [19] PENG J B,CAO Z,YU X,et al. Continuous 500-Hz OH-PLIF measurements in a hydrogen-fueled scramjet combustor[J]. Frontiers in Physics,2020,8:101. doi: 10.3389/fphy.2020.00101
  • 加载中
图(9) / 表(1)
计量
  • 文章访问数:  406
  • HTML全文浏览量:  197
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-30
  • 修回日期:  2022-01-04
  • 录用日期:  2022-01-06
  • 网络出版日期:  2022-09-23
  • 刊出日期:  2022-09-02

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日