飞行器表面气动载荷的柔性智能蒙皮多参量测量

Multi-parameter measurement of aerodynamic load via flexible sensing skin

  • 摘要: 飞行器表面气动参数特征是飞行器结构设计和安全评估的重要依据,而风洞试验作为最有效的测试手段,通常面临破坏结构、测量物理量单一等问题。提出曲面共形的柔性智能蒙皮测量技术,集成了多种超薄柔性传感器阵列,通过剪纸–拼接的完全共形方式集成到飞行器结构表面,在不改变结构表面形貌的情况下同步实时测量壁面静态压力、脉动压力、温度、壁面剪应力等多种气动参数。在直流式风洞、射流平台和FL–9风洞中对NACA0012机翼和飞行器尾翼进行了变风速和变迎角试验,分析风洞试验中采集获得的多种气动参数,验证了该系统的可用性,为风洞试验中柔性智能蒙皮多参量同步测量气动特性研究提供参考。

     

    Abstract: Aerodynamic characteristics of aircraft are critical for the design and security evaluation of aircraft structures. Wind tunnel test is the most effective experimental method, which is faced with the problems of structure damage and fewer parameters measurement. Herein, we propose a conformal measurement technique based on flexible sensing skin integrated with variety of ultra-thin flexible sensors, that are attached on surface of aircrafts consistently by kirigami assembly strategy. The sensing skin can simultaneously obtain multiple aerodynamic parameters like static pressure, pulsating pressure, temperature and wall shear force, without changing the surface morphology of the structure. Experiments on NACA0012 wing and aircraft tail under variable wind speed and variable angle of attack are carried out in the direct wind tunnel, jet platform and FL–9 wind tunnel. The characteristics of parameters collected in the wind tunnel are analyzed, which proves the availability of the system, paving a way for simultaneous measurement of various aerodynamic characteristics by flexible sensing skin in wind tunnel experiments.

     

/

返回文章
返回