TPIV study for near-field tip vortex from an elliptical hydrofoil
-
摘要: 梢涡空化作为一种常见的空化现象,广泛存在于水力机械及船舶推进领域。梢涡空化初生与桨叶梢部的旋涡流动密切相关,因此有必要深入研究梢涡流场,揭示其流动特征与空化的内在联系。基于高时间解析度的层析PIV技术,在高速空泡水洞中对椭圆水翼的近尾迹梢涡流场开展了实验研究。结果表明:梢涡在近尾迹区域内存在明显的摆动现象,未考虑旋涡摆动的时间平均会在时均流场中引入额外的误差,因此在梢涡特性的定量研究中有必要滤除旋涡摆动的影响;在水翼脱落剪切层的作用下,涡核中心两侧的切向速度分布明显不对称,且在剪切层与涡核之间存在高速轴向流动区域;梢涡流场中的湍流脉动能量主要集中在涡核内部,且由法向、展向速度脉动主导。结合前人研究,发现法向、展向速度脉动是涡核内部湍流压力脉动的主要来源。Abstract: Tip vortex cavitation (TVC) is a common type of cavitation in hydraulic machinery and marine propulsion. Since TVC inception is highly relevant to the vortical flow around the blade tip of turbines and propellers, it is essential to give more insights into the flow field of the tip vortex to reveal the inherent relationship between flow properties and TVC. Measurement for the tip vortex from an elliptical hydrofoil has been conducted in a high-speed cavitation tunnel utilizing tomographic particle image velocimetry (TPIV) with high time-resolution. The results show that the wandering motion of the tip vortex is noticeable in the near field. The time-averaging process without taking into account wandering motion can bring extra errors into the time-averaged flow field. Therefore, it is necessary to filter out the wandering motion for the quantitative analysis on vortex characteristics. The tip vortex is under roll-up process and can be greatly affected by the shear layer from the hydrofoil, which contributes to the asymmetric circumferential velocity distribution and a high-axial-velocity area between the shear layer sheet and the vortex core. The tip vortex contains the most of the turbulence energy within its core and the turbulence energy is dominated by the vertical and spanwise velocity fluctuations which are considered as the main source of the fluctuating pressure in the core center combining with previous researches.
-
Key words:
- elliptical hydrofoil /
- tip vortex /
- TPIV /
- flow field measurement /
- vortex motion
-
表 1 涡核中心各速度分量脉动对湍动能的贡献
Table 1. The contribution of each velocity component fluctuation to TKE in the core center
α/(° ) Rec 0.5u' 2U∞–2k–1 0.5v' 2U∞–2k–1 0.5w' 2U∞–2k–1 5 2.48×105 7.6% 40.4% 52.0% 4.70×105 5.7% 41.6% 52.7% 10 2.48×105 10.3% 40.6% 49.1% -
[1] KÜCHEMANN D. Report on the I. U. T. A. M. symposium on concentrated vortex motions in fluids[J]. Journal of Fluid Mechanics,1965,21(1):1-20. doi: 10.1017/s0022112065000010 [2] DREYER M,DECAIX J,MÜNCH-ALLIGNÉ C,et al. Mind the gap: a new insight into the tip leakage vortex using stereo-PIV[J]. Experiments in Fluids,2014,55(11):1-13. doi: 10.1007/s00348-014-1849-7 [3] FELLI M,FALCHI M. Propeller tip and hub vortex dynamics in the interaction with a rudder[J]. Experiments in Fluids,2011,51(5):1385-1402. doi: 10.1007/s00348-011-1162-7 [4] 潘森森, 彭晓星. 空化机理[M]. 北京: 国防工业出版社, 2013.PAN S S, PENG X X. Physical mechanism of cavitation[M]. Beijing: National Defense Industry Press, 2013. [5] 刘玉文,徐良浩,宋明太,等. 水翼叶梢涡空化实验研究进展[J]. 实验流体力学,2020,34(5):1-11. doi: 10.11729/syltlx20190083LIU Y W,XU L H,SONG M T,et al. Experimental research progress of hydrofoil tip vortex cavitation[J]. Journal of Experiments in Fluid Mechanics,2020,34(5):1-11. doi: 10.11729/syltlx20190083 [6] McCORMICK B W Jr. On cavitation produced by a vortex trailing from a lifting surface[J]. Journal of Basic Enginee-ring,1962,84(3):369-379. doi: 10.1115/1.3657328 [7] BILLET M L,HOLL J W. Scale effects on various types of limited cavitation[J]. Journal of Fluids Engineering,1981,103(3):405-414. doi: 10.1115/1.3240800 [8] PAUCHET A,BRIANGON-MARJOLLET L. Recent results on tip vortex cavitation scale effects at high Reynolds numbers[J]. WIT Transactions on The Built Environment,1993(1):1-8. doi: 10.2495/NEVA930131 [9] FRUMAN D H,CERRUTTI P,PICHON T,et al. Effect of hydrofoil planform on tip vortex roll-up and cavitation[J]. Journal of Fluids Engineering,1995,117(1):162-169. doi: 10.1115/1.2816806 [10] POGOZELSKI E, SHEKARRIZ A, KATZ J, et al. Three dimensional near field behavior of a tip vortex developing on an elliptic foil[C]//Proc of the 31st Aerospace Sciences Meeting. 1993: 865. doi: 10.2514/6.1993-865 [11] STINEBRING D R,FARRELL K J,BILLET M L. The structure of a three-dimensional tip vortex at high Reynolds numbers[J]. Journal of Fluids Engineering,1991,113(3):496-503. doi: 10.1115/1.2909524 [12] ARNDT R E A. Cavitation in vortical flows[J]. Annual Review of Fluid Mechanics,2002,34(1):143-175. doi: 10.1146/annurev.fluid.34.082301.114957 [13] ZHANG L X,ZHANG N,PENG X X,et al. A review of studies of mechanism and prediction of tip vortex cavitation inception[J]. Journal of Hydrodynamics,2015,27(4):488-495. doi: 10.1016/s1001-6058(15)60508-x [14] PENNINGS P C,WESTERWEEL J,TERWISGA T J C. Flow field measurement around vortex cavitation[J]. Expe-riments in Fluids,2015,56(11):1-13. doi: 10.1007/s00348-015-2073-9 [15] DREYER M. Mind the gap: tip leakage vortex dynamics and cavitation in axial turbines[D]. Lausanne: École Poly-technique Fédérale de Lausanne, 2015. doi: 10.5075/epfl-thesis-6611 [16] PENG X X,XU L H,LIU Y W,et al. Experimental measurement of tip vortex flow field with/without cavitation in an elliptic hydrofoil[J]. Journal of Hydrodynamics,2017,29(6):939-953. doi: 10.1016/s1001-6058(16)60808-9 [17] BOSSCHERS J. An analytical and semi-empirical model for the viscous flow around a vortex cavity[J]. International Journal of Multiphase Flow,2018,105:122-133. doi: 10.1016/j.ijmultiphaseflow.2018.03.021 [18] ASNAGHI A,SVENNBERG U,BENSOW R E. Large eddy simulations of cavitating tip vortex flows[J]. Ocean Enginee-ring,2020,195:106703. doi: 10.1016/j.oceaneng.2019.106703 [19] CHANG N,GANESH H,YAKUSHIJI R,et al. Tip vortex cavitation suppression by active mass injection[J]. Journal of Fluids Engineering,2011,133(11):111301. doi: 10.1115/1.4005138 [20] LEE S J,SHIN J W,ARNDT R E A,et al. Attenuation of the tip vortex flow using a flexible thread[J]. Experiments in Fluids,2017,59(1):1-12. doi: 10.1007/s00348-017-2476-x [21] AMINI A,SEO J,RHEE S H,et al. Mitigating tip vortex cavitation by a flexible trailing thread[J]. Physics of Fluids,2019,31(12):127103. doi: 10.1063/1.5126376 [22] AMINI A,RECLARI M,SANO T,et al. Suppressing tip vortex cavitation by winglets[J]. Experiments in Fluids,2019,60(11):1-15. doi: 10.1007/s00348-019-2809-z [23] ASNAGHI A,SVENNBERG U,GUSTAFSSON R,et al. Investigations of tip vortex mitigation by using roughness[J]. Physics of Fluids,2020,32(6):065111. doi: 10.1063/5.0009622 [24] SVENNBERG U,ASNAGHI A,GUSTAFSSON R,et al. Experimental analysis of tip vortex cavitation mitigation by controlled surface roughness[J]. Journal of Hydrodynamics,2020,32(6):1059-1070. doi: 10.1007/s42241-020-0073-6 [25] WANG H P,GAO Q,WEI R J,et al. Intensity-enhanced MART for tomographic PIV[J]. Experiments in Fluids,2016,57(5):1-19. doi: 10.1007/s00348-016-2176-y [26] SCARANO F. Iterative image deformation methods in PIV[J]. Measurement Science and Technology,2002,13(1):1-19. doi: 10.1088/0957-0233/13/1/201 [27] ZHOU J,ADRIAN R J,BALACHANDAR S,et al. Mecha-nisms for generating coherent packets of hairpin vortices in channel flow[J]. Journal of Fluid Mechanics,1999,387:353-396. doi: 10.1017/s002211209900467x [28] BHAGWAT M J,RAMASAMY M. Effect of tip vortex aperiodicity on measurement uncertainty[J]. Experiments in Fluids,2012,53(5):1191-1202. doi: 10.1007/s00348-012-1348-7 [29] DEVENPORT W J,RIFE M C,LIAPIS S I,et al. The structure and development of a wing-tip vortex[J]. Journal of Fluid Mechanics,1996,312:67-106. doi: 10.1017/s0022112096001929 [30] IUNGO G V,SKINNER P,BURESTI G. Correction of wandering smoothing effects on static measurements of a wing-tip vortex[J]. Experiments in Fluids,2009,46(3):435-452. doi: 10.1007/s00348-008-0569-2 [31] 薛栋,潘翀,袁先士,等. 低雷诺数下翼尖涡统计特性实验研究[J]. 实验流体力学,2019,33(5):36-41. doi: 10.11729/syltlx20180129XUE D,PAN C,YUAN X S,et al. Experimental investiga-tion on the characteristics of wingtip vortex at low Reynolds number[J]. Journal of Experiments in Fluid Mechanics,2019,33(5):36-41. doi: 10.11729/syltlx20180129 [32] HEYES A L, JONES R F, SMITH D A R. Wandering of wing-tip vortices[C]//Proceedings of 12th international sym-posium on the applications of laser techniques to fluid me-chanics. 2004. [33] BERESH S J,HENFLING J F,SPILLERS R W. Meander of a fin trailing vortex and the origin of its turbulence[J]. Experiments in Fluids,2010,49(3):599-611. doi: 10.1007/s00348-010-0825-0 [34] 邱思逸,程泽鹏,向阳,等. 基于线性稳定性分析的翼尖涡摇摆机制[J]. 航空学报,2019,40(8):122712.QIU S Y,CHENG Z P,XIANG Y,et al. Mechanism of wingtip vortex wandering based on linear stability analysis[J]. Acta Aeronautica et Astronautica Sinica,2019,40(8):122712. [35] LEE T,PEREIRA J. Nature of wakelike and jetlike axial tip vortex flows[J]. Journal of Aircraft,2010,47(6):1946-1954. doi: 10.2514/1.c000225 [36] SKINNER S N,GREEN R B,ZARE-BEHTASH H. Wingtip vortex structure in the near-field of swept-tapered wings[J]. Physics of Fluids,2020,32(9):095102. doi: 10.1063/5.0016353 -