Researches on a large natural moveable icing wind tunnel and test methods
-
摘要: 利用冬季自然低温进行结冰试验是飞机大尺寸部件和整机结冰试验的有效方法。文章总结了法国、加拿大、美国、俄罗斯等国家季节性结冰风洞的主要参数,分析了季节性结冰风洞在大尺寸机翼、螺旋桨和飞机等方面的试验能力。基于中国航空工业空气动力研究院季节性可移动式结冰风洞开展了螺旋桨结冰和机上地面结冰试验方法研究,分析了螺旋桨结冰和冰脱落规律,对于进一步研究螺旋桨结冰问题、发展机上地面结冰试验技术具有参考价值。提出了一种季节性、可移动、模块化组装的直流式结冰风洞概念设计方案,利用我国冬季低温自然环境,每年11月至次年3月具备结冰试验条件,试验窗口期与国外同类设施相当,可满足大尺寸模型和飞机结冰试验需求,为我国建设大型季节性结冰风洞、发展结冰风洞试验技术提供参考。Abstract: An open circuit natural icing wind tunnel sucking cold air from the outside in winter provides affordable icing wind tunnel test methods for full scale models and aircrafts. Information of natural icing wind tunnels is summarized, and test capabilities on large scale wings, propellers, and aircrafts are analyzed. The propeller and aircraft icing test methods were researched in Harbin using a single module natural icing wind tunnel, and ice accretion and shedding on the propeller are documented and analyzed, test results of which have a certain reference value for propeller and aircraft icing researches. A seasonal, moveable and assembled icing wind tunnel concept is presented which can take the advantage of cold winter climate, and allows a similar period from November to March to conduct icing tests compared with the outdoor icing test facility in Winnipeg, Canada. Researches provide references for the construction of national large scale natural icing test facilities and development of test methods.
-
序号 试验设施名称 国家 试验段尺寸 主要试验能力 液态水含量
/(g·m–3)水滴平均
体积直径/µm制冷
系统1 Artington Icing Wind Tunnel 英国 0.50 m×0.50 m — 0.10~5.00 12~100 有 2 Aerazur Tunnel de Givrage 法国 0.50 m×0.30 m — 0.50~10.00 10~40 有 3 AIT Altitude Test Facility 英国 0.51 m 3 0.20~2.50+ 15~40 有 4 AEDC Engine Test Facilities
T-1, T-2, T-4美国 直径0.90 m,2.10 m,3.80 m — 0.20~3.90 15~35 — 5 AEDC Engine Test Facilities J-1,2 美国 直径4.90 m,6.10 m — 0.20~3.90 15~35 — 6 AEDC Engine Test Cell C-2 美国 直径8.50 m — 0.20~3.90 15~35 — 7 AEDC Altitude Chamber R-1d 美国 直径0.90 m — 0.20~3.90 15~40 — 8 BFG Icing Tunnel 美国 1.10 m×0.56 m 1,2,4,5,7,8c 0.40~3.04 10~50 有 9 Boeing BRAIT 美国 2.40 m×1.50 m,
1.80 m×1.20 m1,2,4,6b,7,8b 0.25~3.00 15~40 有 10 CEPr S1 法国 直径3.50 m 3,4,5,7,8c 0.15~10.00 15~50 — 11 CEPr R6 法国 直径5.00 m 1,3,4,5,8c 0.05~10.00 15~50 — 12 CEPr PAG 法国 0.20 m×0.20 m;
0.20 m×0.50 m1,7 0.10~10.00 15~50 — 13 FluiDyne Icing Wind Tunnel 美国 0.60 m×0.60 m — 0.10~5.00+ 10~35 无 14 G.E. Site 6 美国 9.80 m×11.30 m 3,5,7 0.30~3.60 14~40 无 15 NASA IRT 美国 1.80 m×2.70 m 1,2,4,5,6b,7,8b 0.20~5.00 10~40 有 16 NRC Gas Turbine Icing Test
Facility Test Cell #4加拿大 直径7.60 m — 0.10~2.00 15~40 — 17 NRC Icing Tunnel Facility 加拿大 0.57 m×0.57 m — 0.10~1.70 10~35 有 18 NRC Helicopter Icing Facility 加拿大 5.00 m×23.00 m 8a 0.1.00~1.00 30~60 无 19 ONERA S1MA 法国 直径8.00 m 1,2,4,5,6,7,8b 0.40~10.00 10~300 无 20 Rolls-Royce Hucknall
15 Inch Icing Tunnel英国 直径0.46 m — 0.10~5.00 10~50 — 21 Rolls-Royce Derby ATF 英国 直径4.00 m — — 10~50 — 22 Rosemount Icing Wind Tunnel 美国 0.25 m×0.25 m 7 0.10~3.00 15~40 有 23 T & EE PyestocK Altitude Test Facility 英国 直径7.6 m,6.1 m 3,4,5,8a 0.30~2.50 15~40 — 24 Textron Small Engine/
inlet Icing Ground Test Facility美国 直径0.90 m 3,4,5 0.50~3.00+ 15~40 — 25 Textron Turbofan Engine
icing Ground Test Facility美国 直径1.25 m 3 0.20~3.00+ 15~40 — 26 UQAC IWT 美国 0.50 m×0.60 m — 0.05~3.00 10~500 有 27 UQAC FRFD 美国 1.80 m×8.00 m 速度非常低的
垂直风洞0.50~10.00 mm/h 200~2000 有 试验能力:1.二维翼型;2.三维机翼;3.发动机带进气道;4.进气道;5.自由流进气道;6.整机;7.传感器;8.直升机;a.全尺寸;b.缩比;c.桨叶。 表 2 国外季节性结冰试验设施信息
Table 2. Summary of natural icing test facilities
序号 风洞名称 国家 机构 试验段尺寸 风速/(m·s–1) 水滴平均体积直径/µm 液态水含量/(g·m–3) 1 S1MA 法国 ONERA 直径8.00 m 10.0~100.0 10~300 0.4~10.0 2 PIWT 加拿大 NRC 3.00 m×6.00 m 40.0~67.0 15~50 0.1~2.5 3 IWT 美国 FluiDyne 0.56 m×0.56 m 30.5~274.0 10~35 0.1~5.0 4 AHT-SD 俄罗斯 TsAGI 1.00 m×1.00 m 约150.0 — — 表 3 螺旋桨结冰试验状态表
Table 3. Propeller icing test conditions
车次 风速
/(m·s–1)水滴平均体积
直径/µm液态水含量
/(g·m–3)气温
/℃气压
/kPa湿度
/%螺旋桨转速
/(r·min–1)试验时间
/min1 10 20 0.5 –14.7 100.5 56 1100 5 2 10 20 0.8 –7.9 100.1 27 500 15 3 10 20 0.5 –11.0 100.0 36 1100 15 4 10 20 0.5 –10.0 99.6 68 1100/1500 15 5 10 20 0.5 –12.9 100.0 63 1100/1900 15 表 4 大型季节性可移动式结冰风洞试验能力
Table 4. Large natural moveable icing wind tunnel test capability
组合形式 试验段尺寸 试验能力 1×1 2.5 m×2.5 m 螺旋桨、发动机、飞机整机 2×2 5.0 m×5.0 m 螺旋桨、发动机、飞机整机 1×4 2.5 m×10.0 m 三维全尺寸机翼 -
[1] 林贵平, 卜雪琴, 申晓斌. 飞机结冰与防冰技术[M]. 北京: 北京航空航天大学出版社, 2016. [2] SAE. Summary of icing simulation test facilities: SAE AIR 5320[S]. US-SAE, 1999. [3] 倪章松,刘森云,王桥,等. 3 m×2 m结冰风洞试验技术研究进展[J]. 实验流体力学,2019,33(6):46-53. doi: 10.11729/syltlx20180115NI Z S,LIU S Y,WANG Q,et al. Research progress of test technologies for 3 m × 2 m icing wind tunnel[J]. Journal of Experiments in Fluid Mechanics,2019,33(6):46-53. doi: 10.11729/syltlx20180115 [4] 朱东宇,裴如男,杨秋明,等. FL-61 结冰风洞热气防冰系统试验方法研究[J]. 气动研究与实验,2020,32(1):144-150. doi: 10.12050/are20200112ZHU D Y,PEI R N,YANG Q M, et al. Experimental researches on a hot air anti-icing system in FL-61 icing wind tunnel[J]. Aerodynamic Research & Experiment,2020,32(1):144-150. doi: 10.12050/are20200112 [5] 邢玉明, 盛强, 常士楠. 大型开式冰风洞的模拟技术研究[C]//大型飞机关键技术高层论坛暨中国航空学会2007年学术年会. 2007.XING Y M, SHENG Q, CHANG S N. Research on simu-lation technology of large open ice wind tunnel[C]//Proc of High level Forum on Key Technologies of Large Aircraft and Annual Meeting of CAAC. 2007 . [6] OLESKIW M M, PENNA P J. Airfoil-flap performance with de/anti-icing fluids and freezing precipitation[R]. TP 13426E, 1999. [7] GUFFOND D, CASSAING J, BRUNET L. Overview of icing research at ONERA[C]//Proc of the 23rd Aerospace Sciences Meeting. 1985. [8] KALYULIN S L, MODORSKII V YA, MAKSIMOV. Physical modeling of the influence of the gas-hydrodynamic flow parameters on the streamlined surface icing with vibrations[C]//Proc of International Conference on the Methods of Aerophysical Research . 2018. [9] OLSEN W. Survey of aircraft icing simulation test facilities in north America [R]. NASA TM 81707, 1981. [10] RIVERS M B,DITTBERNER A. Experimental investi-gations of the NASA common research model[J]. Journal of Aircraft,2014,51(4):1183-1193. doi: 10.2514/1.c032626 [11] GUFFOND D. Icing and de-icing test on a 1/4 scale rotor in the ONERA S1MA wind tunnel[C]//Proc of the 24th Aerospace Sciences Meeting. 1986. [12] NTSB. Aircraft accident report: in-flight icing encounter and loss of control; simmons airlines, d. b. a. American eagle flight 4184; avions de transport regional (ATR) model 72-212, N401AM; Roselawn, Indiana; October 31, 1994 [R]. NTSB/AAR-96/01, 1996. [13] CHARPIN F, PRIEUR J. Large scale icing tests in ONERA SIMA wind tunnel-current capabilities and planned improve-ments [R]. AIAA 96-2202, 1996. [14] HUANG X Z, MYERS B, D'AVIRRO J, et al. Icing wind-tunnel icing test on a contaminated full-scale Wing-Model at takeoff conditions [R]. AIAA-2008-6417, 2008. [15] BROEREN A P, RILEY J T. Review of the aerodynamic acceptance test and application to anti-icing fluids testing in the NRC propulsion and icing wind tunnel [R]. NASA/TM-2012-216014, 2012. [16] IDZOREK J. Observations on the development of a natural refrigeration icing wind tunnel [R]. AIAA 87-0175, 1987. doi: 10.2514/6.1987-175 [17] TsAGI. TsAGI specialists have finished testing the anti-icing system of an unmanned aircraft [EB/OL]. [2021-08-20]. http://tsagi.com/pressroom/news/2879/?sphrase_id=95317. [18] General electric, some like it cold: where jet engines must endure icing to take the cake [EB/OL]. [2021-08-20]. https://www.ge.com/news/reports/some-like-it-cold-where-jet-engines-must-endure. [19] MACLEOD J, CLARKE M, MARSH D. The glacier icing facility-lessons learnt in five years of operation [C]//Proc of the SAE Technical Paper Series, 400 Commonwealth Drive. 2015. doi: 10.4271/2015-01-2144 [20] LEWIS J P, STEVENS H C. Icing and deicing of a propeller with internal electric blade heaters [R]. NACA-TN-1691, 1948. [21] LEARY W M. We freeze to please: research tunnel and the quest for flight safety [R]. SP-2002-4226, 2002. [22] PELLICANO P, CHRIS D , SMITH T, et al. Propeller icing tunnel test on a full-scale turboprop engine[R]. DOT/FAA/AR-06/60, 2010. [23] 丁立冬. 民用飞机机上地面验证试验研究[J]. 航空标准化与质量,2013(3):27-29. doi: 10.3969/j.issn.1003-6660.2013.03.009 [24] BELL J D. Icing at the McKinley climatic laboratory [R]. AIAA-2005-695, 2005. [25] HAMSTRA J W. The F-35 lightning II: from concept to cockpit[M]. Reston, VA: AIAA, Inc, 2019. doi: 10.2514/4.105678 [26] 李斯,于雷,金沙,等. 移动式冰风洞试验方法研究和应用[J]. 空气动力学学报,2017,35(6):855-859. doi: 10.7638/kqdlxxb-2015.0121LI S,YU L,JIN S,et al. Study and application of movable icing wind tunnel test method[J]. Acta Aerodynamica Sinica,2017,35(6):855-859. doi: 10.7638/kqdlxxb-2015.0121 [27] 特里. 飞机结冰[M]. 黎先平, 等译. 上海: 上海交通大学出版社, 2020: 61-62. -