留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

生物多糖溶液喷射减阻实验研究

孟凡哲 秦丽萍 谢络 时朋飞 胡海豹

孟凡哲,秦丽萍,谢络,等. 生物多糖溶液喷射减阻实验研究[J]. 实验流体力学,2022,36(X):1-6 doi: 10.11729/syltlx20210089
引用本文: 孟凡哲,秦丽萍,谢络,等. 生物多糖溶液喷射减阻实验研究[J]. 实验流体力学,2022,36(X):1-6 doi: 10.11729/syltlx20210089
MENG F Z,QIN L P,XIE L,et al. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-6. doi: 10.11729/syltlx20210089
Citation: MENG F Z,QIN L P,XIE L,et al. Experimental study on drag reduction characteristics of biopolysaccharide solution[J]. Journal of Experiments in Fluid Mechanics, 2022,36(X):1-6. doi: 10.11729/syltlx20210089

生物多糖溶液喷射减阻实验研究

doi: 10.11729/syltlx20210089
基金项目: 国家自然科学基金项目(52071272,12102358);基础前沿项目(JCKY2018*18);陕西省自然科学基础研究计划资助项目(2020JC-18);中央高校基本科研业务费专项资金(3102020HHZY030014,3102021HHZY030008);中国博士后科学基金资助项目(2021M692617);重庆市自然科学基金项目(cstc2021jcyj-msxmX0393)
详细信息
    作者简介:

    孟凡哲:(1998—),男,山东阳谷人,硕士研究生。研究方向:水下高聚物减阻技术。通信地址:陕西省西安市碑林区友谊西路127号西北工业大学友谊校区航海学院(710072)。E-mail:fzhemeng@mail.nwpu.edu.cn

    通讯作者:

    E-mail:huhaibao@nwpu.edu.cn

  • 中图分类号: O357.5

Experimental study on drag reduction characteristics of biopolysaccharide solution

  • 摘要: 为获得生物多糖溶液的水下减阻性能,在重力式循环水槽实验系统中,测试了瓜尔胶、黄原胶、黄蓍胶及刺槐豆胶等4种生物多糖溶液的喷射减阻特性,给出了喷射溶液速率、主流雷诺数及喷射溶液质量分数对多糖溶液减阻的影响规律。研究结果表明:4种生物多糖溶液均具有显著的喷射减阻效果,其中刺槐豆胶溶液减阻率最高(14.3%);同一主流雷诺数下,随着喷射溶液速率的提高,各多糖溶液的减阻率显著提高,减阻率达到峰值后则呈现出不同的变化趋势;多糖溶液在主流雷诺数较小(小于2.0×104)时减阻效果更优,提高主流雷诺数后,多糖溶液表现出差异化的减阻规律;过高的喷射溶液质量分数会降低多糖溶液减阻效果,提高主流雷诺数会使多糖溶液减阻效果随质量分数的提高出现“峰值后移”现象。通过引入“喷射溶液相对质量分数”将喷射溶液速率、主流雷诺数及喷射溶液质量分数对减阻效果的影响相互耦合,随着相对质量分数的增大,各多糖溶液的减阻率均表现出先增后降的变化规律。最后,基于相对质量分数初步阐明了多糖溶液的减阻规律。
  • 图  1  实验装置及喷射腔示意图

    Figure  1.  Schematic diagram of experimental apparatus and injection device

    图  2  喷射速率对多糖溶液减阻的影响

    Figure  2.  Effect of injection rate on drag reduction of polysaccharide solution

    图  3  主流雷诺数对多糖溶液减阻的影响

    Figure  3.  Effect of Re on drag reduction of polysaccharide solution

    图  4  多糖溶液质量分数对减阻的影响

    Figure  4.  Effect of mass fraction on drag reduction of polysaccharide solution

    图  5  多糖溶液减阻率随相对质量分数的变化

    Figure  5.  Variation of Rd of polysaccharide solution with ωr

  • [1] ALJALLIS E,SARSHAR M A,DATLA R,et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids,2013,25(2):025103. doi: 10.1063/1.4791602
    [2] LING H J,KATZ J,FU M,et al. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface[J]. Physical Review Fluids,2017,2(12):124005. doi: 10.1103/physrevfluids.2.124005
    [3] CHOI W,BYEON H,PARK J Y,et al. Effects of pressure gradient on stability and drag reduction of superhydro-phobic surfaces[J]. Applied Physics Letters,2019,114(10):101603. doi: 10.1063/1.5085081
    [4] PARK S R,WALLACE J M. Flow alteration and drag reduction by riblets in a turbulent boundary layer[J]. AIAA Journal,1994,32(1):31-38. doi: 10.2514/3.11947
    [5] TANG Y P,CLARK D G. On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface[J]. Applied Scientific Research,1993,50(3-4):215-232. doi: 10.1007/BF00850558
    [6] 冯家兴,胡海豹,卢丙举,等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报,2020,52(1):24-30. doi: 10.6052/0459-1879-19-279

    FENG J X,HU H B,LU B J,et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(1):24-30. doi: 10.6052/0459-1879-19-279
    [7] KWON B H,KIM H H,JEON H J,et al. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles[J]. Experiments in Fluids,2014,55(4):1-11. doi: 10.1007/s00348-014-1722-8
    [8] ELBING B R,WINKEL E S,LAY K A,et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction[J]. Journal of Fluid Mechanics,2008,612:201-236. doi: 10.1017/s0022112008003029
    [9] 宋武超,王聪,魏英杰,等. 水下航行体微气泡减阻特性试验研究[J]. 振动与冲击,2019,38(5):203-208,228. doi: 10.13465/j.cnki.jvs.2019.05.029

    SONG W C,WANG C,WEI Y J,et al. Tests for microbubble drag reduction features of an underwater vehicle[J]. Journal of Vibration and Shock,2019,38(5):203-208,228. doi: 10.13465/j.cnki.jvs.2019.05.029
    [10] TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers: The 1st International Congress on Rheology[C]//Proc of the 1st International Congress on Rheology. 1948.
    [11] BROSTOW W. Drag reduction and mechanical degradation in polymer solutions in flow[J]. Polymer,1983,24(5):631-638. doi: 10.1016/0032-3861(83)90119-2
    [12] ELBING B R,PERLIN M,DOWLING D R,et al. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions[J]. Physics of Fluids,2013,25(8):085103. doi: 10.1063/1.4817073
    [13] 任刘珍,张庆辉,陈少强,等. 管道内均匀与非均匀PEO溶液湍流减阻特性研究[J]. 实验力学,2019,34(2):217-223. doi: 10.750/1001-1888-17-188

    REN L Z,ZHANG Q H,CHEN S Q,et al. Study of the turbulent flow drag reduction characteristics of homoge-neous and inhomogeneous PEO solution in pipeline flow[J]. Journal of Experimental Mechanics,2019,34(2):217-223. doi: 10.750/1001-1888-17-188
    [14] 王青会,刘冬洁,魏进家. 阳离子型表面活性剂与非离子型聚合物相互作用减阻研究[J]. 西安交通大学学报,2018,52(1):26-32. doi: 10.7652/xjtuxb201801005

    WANG Q H,LIU D J,WEI J J. Investigation on the drag reduction by interaction of cationic surfactant with nonionic polymer[J]. Journal of Xi'an Jiaotong University,2018,52(1):26-32. doi: 10.7652/xjtuxb201801005
    [15] MAHMOOD W K,KHADUM W A,EMAN E,et al. Biopolymer-surfactant complexes as flow enhancers: charac-terization and performance evaluation[J]. Applied Rheology,2019,29(1):12-20. doi: 10.1515/arh-2019-0002
    [16] PANG M J,XIE C C,ZHANG Z,et al. Experimental studies on drag reduction by coupled addition of nonionic polymer poly(ethylene oxide) and cationic surfactant cetyl-trimethyl ammonium chloride[J]. Asia-Pacific Journal of Chemical Engineering,2018,13(4):e2218. doi: 10.1002/apj.2218
    [17] WINKEL E S,OWEIS G F,VANAPALLI S A,et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions[J]. Journal of Fluid Mechanics,2009,621:259-288. doi: 10.1017/s0022112008004874
    [18] MOTOZAWA M, KUROSAWA T, XU H N, et al. Experimental study on turbulent drag reduction and polymer mass fraction distribution with blowing polymer solution from the channel wall[C]//Proceedings of 2010 14th International Heat Transfer Conference. 2011: 797-805. doi: 10.1115/IHTC14-23199
    [19] SOARES E J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics,2020,276:104225. doi: 10.1016/j.jnnfm.2019.104225
    [20] ABDUL BARI H A,KAMARULIZAM S N,MAN R C. Investigating drag reduction characteristic using okra mucilage as new drag reduction agent[J]. Journal of Applied Sciences,2011,11(14):2554-2561. doi: 10.3923/jas.2011.2554.2561
    [21] ABDUL BARI H A,LETCHMANAN K,YUNUS R M. Drag reduction characteristics using aloe vera natural mucilage: an experimental study[J]. Journal of Applied Sciences,2011,11(6):1039-1043. doi: 10.3923/jas.2011.1039.1043
    [22] COELHO E C,BARBOSA K C O,SOARES E J,et al. Okra as a drag reducer for high Reynolds numbers water flows[J]. Rheologica Acta,2016,55(11-12):983-991. doi: 10.1007/s00397-016-0974-z
    [23] SOARES E J,SIQUEIRA R N,LEAL L M,et al. The role played by the aging of aloe vera on its drag reduction properties in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics,2019,265:1-10. doi: 10.1016/j.jnnfm.2018.12.010
    [24] RAJAPPAN A,MCKINLEY G H. Epidermal biopolysac-charides from plant seeds enable biodegradable turbulent drag reduction[J]. Scientific Reports,2019,9:18263. doi: 10.1038/s41598-019-54521-3
    [25] KIM C A,LIM S T,CHOI H J,et al. Characterization of drag reducing guar gum in a rotating disk flow[J]. Journal of Applied Polymer Science,2002,83(13):2938-2944. doi: 10.1002/app.10300
    [26] CAMPOLO M,SIMEONI M,LAPASIN R,et al. Turbulent drag reduction by biopolymers in large scale pipes[J]. Journal of Fluids Engineering,2015,137(4):041102. doi: 10.1115/1.4028799
    [27] 禹燕飞, 李明义, 赵文斌, 等. 藻类多糖高聚物减阻特性的试验研究[C]//中国力学大会——2013论文摘要集. 2013: 259.
    [28] 李昌烽,禹燕飞,赵文斌,等. 黄原胶水溶液管道流动减阻特性的试验[J]. 江苏大学学报(自然科学版),2015,36(1):30-35. doi: 10.3969/j.issn.1671-7775.2015.01.006

    LI C F,YU Y F,ZHAO W B,et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University (Natural Science Edition),2015,36(1):30-35. doi: 10.3969/j.issn.1671-7775.2015.01.006
    [29] 朱波,赵文斌,李明义,等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学,2018,32(5):61-66. doi: 10.11729/syltlx20180035

    ZHU B,ZHAO W B,LI M Y,et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics,2018,32(5):61-66. doi: 10.11729/syltlx20180035
    [30] WU J,TULIN M P. Drag reduction by ejecting additive solutions into pure-water boundary layer[J]. Journal of Basic Engineering,1972,94(4):749-754. doi: 10.1115/1.3425541
  • 加载中
图(5)
计量
  • 文章访问数:  1933
  • HTML全文浏览量:  102
  • PDF下载量:  24
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 录用日期:  2021-09-19
  • 修回日期:  2021-09-01
  • 网络出版日期:  2021-12-13

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日