[1] |
ALJALLIS E,SARSHAR M A,DATLA R,et al. Experimental study of skin friction drag reduction on superhydrophobic flat plates in high Reynolds number boundary layer flow[J]. Physics of Fluids,2013,25(2):025103. doi: 10.1063/1.4791602
|
[2] |
LING H J,KATZ J,FU M,et al. Effect of Reynolds number and saturation level on gas diffusion in and out of a superhydrophobic surface[J]. Physical Review Fluids,2017,2(12):124005. doi: 10.1103/physrevfluids.2.124005
|
[3] |
CHOI W,BYEON H,PARK J Y,et al. Effects of pressure gradient on stability and drag reduction of superhydro-phobic surfaces[J]. Applied Physics Letters,2019,114(10):101603. doi: 10.1063/1.5085081
|
[4] |
PARK S R,WALLACE J M. Flow alteration and drag reduction by riblets in a turbulent boundary layer[J]. AIAA Journal,1994,32(1):31-38. doi: 10.2514/3.11947
|
[5] |
TANG Y P,CLARK D G. On near-wall turbulence-generating events in a turbulent boundary layer on a riblet surface[J]. Applied Scientific Research,1993,50(3-4):215-232. doi: 10.1007/BF00850558
|
[6] |
冯家兴,胡海豹,卢丙举,等. 超疏水沟槽表面通气减阻实验研究[J]. 力学学报,2020,52(1):24-30. doi: 10.6052/0459-1879-19-279FENG J X,HU H B,LU B J,et al. Experimental study on drag reduction characteristics of superhydrophobic groove surfaces with ventilation[J]. Chinese Journal of Theoretical and Applied Mechanics,2020,52(1):24-30. doi: 10.6052/0459-1879-19-279
|
[7] |
KWON B H,KIM H H,JEON H J,et al. Experimental study on the reduction of skin frictional drag in pipe flow by using convex air bubbles[J]. Experiments in Fluids,2014,55(4):1-11. doi: 10.1007/s00348-014-1722-8
|
[8] |
ELBING B R,WINKEL E S,LAY K A,et al. Bubble-induced skin-friction drag reduction and the abrupt transition to air-layer drag reduction[J]. Journal of Fluid Mechanics,2008,612:201-236. doi: 10.1017/s0022112008003029
|
[9] |
宋武超,王聪,魏英杰,等. 水下航行体微气泡减阻特性试验研究[J]. 振动与冲击,2019,38(5):203-208,228. doi: 10.13465/j.cnki.jvs.2019.05.029SONG W C,WANG C,WEI Y J,et al. Tests for microbubble drag reduction features of an underwater vehicle[J]. Journal of Vibration and Shock,2019,38(5):203-208,228. doi: 10.13465/j.cnki.jvs.2019.05.029
|
[10] |
TOMS B A. Some observations on the flow of linear polymer solutions through straight tubes at large Reynolds numbers: The 1st International Congress on Rheology[C]//Proc of the 1st International Congress on Rheology. 1948.
|
[11] |
BROSTOW W. Drag reduction and mechanical degradation in polymer solutions in flow[J]. Polymer,1983,24(5):631-638. doi: 10.1016/0032-3861(83)90119-2
|
[12] |
ELBING B R,PERLIN M,DOWLING D R,et al. Modification of the mean near-wall velocity profile of a high-Reynolds number turbulent boundary layer with the injection of drag-reducing polymer solutions[J]. Physics of Fluids,2013,25(8):085103. doi: 10.1063/1.4817073
|
[13] |
任刘珍,张庆辉,陈少强,等. 管道内均匀与非均匀PEO溶液湍流减阻特性研究[J]. 实验力学,2019,34(2):217-223. doi: 10.750/1001-1888-17-188REN L Z,ZHANG Q H,CHEN S Q,et al. Study of the turbulent flow drag reduction characteristics of homoge-neous and inhomogeneous PEO solution in pipeline flow[J]. Journal of Experimental Mechanics,2019,34(2):217-223. doi: 10.750/1001-1888-17-188
|
[14] |
王青会,刘冬洁,魏进家. 阳离子型表面活性剂与非离子型聚合物相互作用减阻研究[J]. 西安交通大学学报,2018,52(1):26-32. doi: 10.7652/xjtuxb201801005WANG Q H,LIU D J,WEI J J. Investigation on the drag reduction by interaction of cationic surfactant with nonionic polymer[J]. Journal of Xi'an Jiaotong University,2018,52(1):26-32. doi: 10.7652/xjtuxb201801005
|
[15] |
MAHMOOD W K,KHADUM W A,EMAN E,et al. Biopolymer-surfactant complexes as flow enhancers: charac-terization and performance evaluation[J]. Applied Rheology,2019,29(1):12-20. doi: 10.1515/arh-2019-0002
|
[16] |
PANG M J,XIE C C,ZHANG Z,et al. Experimental studies on drag reduction by coupled addition of nonionic polymer poly(ethylene oxide) and cationic surfactant cetyl-trimethyl ammonium chloride[J]. Asia-Pacific Journal of Chemical Engineering,2018,13(4):e2218. doi: 10.1002/apj.2218
|
[17] |
WINKEL E S,OWEIS G F,VANAPALLI S A,et al. High-Reynolds-number turbulent boundary layer friction drag reduction from wall-injected polymer solutions[J]. Journal of Fluid Mechanics,2009,621:259-288. doi: 10.1017/s0022112008004874
|
[18] |
MOTOZAWA M, KUROSAWA T, XU H N, et al. Experimental study on turbulent drag reduction and polymer mass fraction distribution with blowing polymer solution from the channel wall[C]//Proceedings of 2010 14th International Heat Transfer Conference. 2011: 797-805. doi: 10.1115/IHTC14-23199
|
[19] |
SOARES E J. Review of mechanical degradation and de-aggregation of drag reducing polymers in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics,2020,276:104225. doi: 10.1016/j.jnnfm.2019.104225
|
[20] |
ABDUL BARI H A,KAMARULIZAM S N,MAN R C. Investigating drag reduction characteristic using okra mucilage as new drag reduction agent[J]. Journal of Applied Sciences,2011,11(14):2554-2561. doi: 10.3923/jas.2011.2554.2561
|
[21] |
ABDUL BARI H A,LETCHMANAN K,YUNUS R M. Drag reduction characteristics using aloe vera natural mucilage: an experimental study[J]. Journal of Applied Sciences,2011,11(6):1039-1043. doi: 10.3923/jas.2011.1039.1043
|
[22] |
COELHO E C,BARBOSA K C O,SOARES E J,et al. Okra as a drag reducer for high Reynolds numbers water flows[J]. Rheologica Acta,2016,55(11-12):983-991. doi: 10.1007/s00397-016-0974-z
|
[23] |
SOARES E J,SIQUEIRA R N,LEAL L M,et al. The role played by the aging of aloe vera on its drag reduction properties in turbulent flows[J]. Journal of Non-Newtonian Fluid Mechanics,2019,265:1-10. doi: 10.1016/j.jnnfm.2018.12.010
|
[24] |
RAJAPPAN A,MCKINLEY G H. Epidermal biopolysac-charides from plant seeds enable biodegradable turbulent drag reduction[J]. Scientific Reports,2019,9:18263. doi: 10.1038/s41598-019-54521-3
|
[25] |
KIM C A,LIM S T,CHOI H J,et al. Characterization of drag reducing guar gum in a rotating disk flow[J]. Journal of Applied Polymer Science,2002,83(13):2938-2944. doi: 10.1002/app.10300
|
[26] |
CAMPOLO M,SIMEONI M,LAPASIN R,et al. Turbulent drag reduction by biopolymers in large scale pipes[J]. Journal of Fluids Engineering,2015,137(4):041102. doi: 10.1115/1.4028799
|
[27] |
禹燕飞, 李明义, 赵文斌, 等. 藻类多糖高聚物减阻特性的试验研究[C]//中国力学大会——2013论文摘要集. 2013: 259.
|
[28] |
李昌烽,禹燕飞,赵文斌,等. 黄原胶水溶液管道流动减阻特性的试验[J]. 江苏大学学报(自然科学版),2015,36(1):30-35. doi: 10.3969/j.issn.1671-7775.2015.01.006LI C F,YU Y F,ZHAO W B,et al. Experiment on drag reduction characteristics of xanthan gum solution in pipe flow[J]. Journal of Jiangsu University (Natural Science Edition),2015,36(1):30-35. doi: 10.3969/j.issn.1671-7775.2015.01.006
|
[29] |
朱波,赵文斌,李明义,等. 黄原胶盐溶液减阻及抗剪切特性的实验研究[J]. 实验流体力学,2018,32(5):61-66. doi: 10.11729/syltlx20180035ZHU B,ZHAO W B,LI M Y,et al. Experimental study on drag reduction and anti-shearing characteristics of xanthan gum solution with NaCl[J]. Journal of Experiments in Fluid Mechanics,2018,32(5):61-66. doi: 10.11729/syltlx20180035
|
[30] |
WU J,TULIN M P. Drag reduction by ejecting additive solutions into pure-water boundary layer[J]. Journal of Basic Engineering,1972,94(4):749-754. doi: 10.1115/1.3425541
|