留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

碳氢燃料旋转爆震直连试验研究

王超 郑榆山 蔡建华 肖保国 刘彧 乐嘉陵

王超,郑榆山,蔡建华,等. 碳氢燃料旋转爆震直连试验研究[J]. 实验流体力学,2022,36(4):1-9 doi: 10.11729/syltlx20210086
引用本文: 王超,郑榆山,蔡建华,等. 碳氢燃料旋转爆震直连试验研究[J]. 实验流体力学,2022,36(4):1-9 doi: 10.11729/syltlx20210086
WANG C,ZHENG Y S,CAI J H,et al. Direct connected experimental research on hydrocarbon-fueled rotating detonation[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):1-9. doi: 10.11729/syltlx20210086
Citation: WANG C,ZHENG Y S,CAI J H,et al. Direct connected experimental research on hydrocarbon-fueled rotating detonation[J]. Journal of Experiments in Fluid Mechanics, 2022,36(4):1-9. doi: 10.11729/syltlx20210086

碳氢燃料旋转爆震直连试验研究

doi: 10.11729/syltlx20210086
基金项目: 高超声速冲压发动机技术重点实验室项目(STS/MY-ZY-2017-001)
详细信息
    作者简介:

    王超:(1987—),男,湖北黄冈人,助理研究员。研究方向:爆震推进。通信地址:四川省绵阳市涪城区二环路南段6号16信箱02分信箱(621000)。E-mail:wangchao5ati@126.com

    通讯作者:

    E-mail:zhengyushan93@126.com

  • 中图分类号: V211.73

Direct connected experimental research on hydrocarbon-fueled rotating detonation

  • 摘要: 以乙烯和常温煤油为燃料开展了旋转爆震直连试验,模拟飞行马赫数5.0,隔离段入口马赫数2.5,采用起爆管进行起爆。研究结果表明,乙烯当量比0.43~0.99范围内,旋转爆震波均可稳定自持传播,传播频率范围5.32~6.42 kHz,传播周期约0.157~0.188 ms。高频压力和壁面压力测量结果表明:旋转爆震波传播频率和燃烧室压力均随当量比增大而线性升高;爆震波高频压力平均峰值随当量比增大先升高后降低;隔离段出口压力随当量比增大逐渐升高,但隔离段入口气流始终未受影响,马赫数保持为2.5。常温煤油当量比为0.70时,也实现了旋转爆震波的稳定传播。
  • 图  1  旋转爆震直连试验模型

    Figure  1.  Rotating detonation direct connected test model

    图  2  加热器室压与总温测量结果

    Figure  2.  Measured results of total pressure and total temperature of air heater

    图  3  试验时序图

    Figure  3.  Experimental test time sequence

    图  4  4#试验压力测量结果

    Figure  4.  Pressure results of test 4#

    图  5  4#试验高频压力

    Figure  5.  High frequency pressure of test 4#

    图  6  4#试验旋转爆震波传播频率

    Figure  6.  Rotating detonation propagation frequency results of test 4#

    图  7  不同当量比下的旋转爆震波传播主频及燃烧室和隔离段压力

    Figure  7.  Rotating detonation propagation frequency,and pressure in the combustor and isolator under different equivalent ratios

    图  8  不同当量比下的爆震波高频压力平均峰值

    Figure  8.  Averaged detonation wave pressure peaks under different equivalent ratios

    图  9  隔离段和燃烧室沿程压力计算结果与试验结果对比

    Figure  9.  Comparison of computational and experimental results of pressure distribution in the isolator and combustor

    图  10  8#试验压力结果

    Figure  10.  Pressure results of test 8#

    图  11  8#试验高频压力结果

    Figure  11.  High frequency pressure results of test 8#

    图  12  煤油燃料旋转爆震试验图像

    Figure  12.  Photography of kerosene-fueled test results

    表  1  试验工况

    Table  1.   Experiment condition

    No.Ф$\overline f $/kHzFuel
    1#0.435.32C2H4
    2#0.515.61C2H4
    3#0.645.98C2H4
    4#0.726.07C2H4
    5#0.876.11C2H4
    6#0.926.42C2H4
    7#0.996.36C2H4
    8#0.703.97Kerosene
    下载: 导出CSV
  • [1] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power,2006,22(6):1204-1216. doi: 10.2514/1.17656
    [2] WOLAŃSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute,2013,34:125-158. doi: 10.1016/j.proci.2012.10.005
    [3] LU F K,BRAUN E M. Rotating detonation wave propulsion: experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power,2014,30(5):1125-1142. doi: 10.2514/1.B34802
    [4] BRAUN E M,LU F K,WILSON D R,et al. Airbreathing rotating detonation wave engine cycle analysis[J]. Aerospace Science and Technology,2013,27(1):201-208. doi: 10.1016/j.ast.2012.08.010
    [5] 刘世杰, 王超, 蒋露欣, 等. 连续旋转爆震冲压发动机直连式试验[C]//第十六届全国激波与激波管学术会议论文. 2014.
    [6] WANG C,LIU W D,LIU S J,et al. Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen[J]. International Journal of Hydrogen Energy,2015,40(30):9530-9538. doi: 10.1016/j.ijhydene.2015.05.060
    [7] WANG C,LIU W D,LIU S J,et al. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor[J]. Experimental Thermal and Fluid Science,2015,66:269-278. doi: 10.1016/j.expthermflusci.2015.02.024
    [8] LIU S J, LIU W D, WANG Y, et al. Free jet test of continuous rotating detonation ramjet engine[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017: 2282. doi: 10.2514/6.2017-2282
    [9] 阎宝林, 张义宁, 宫继双, 等. 液态碳氢燃料连续旋转爆震燃烧实验研究[C]//第五届爆震与新型推进学术会议论文. 2017.
    [10] 郑权,翁春生,白桥栋. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究[J]. 推进技术,2015,36(6):947-952.

    ZHENG Q,WENG C S,BAI Q D. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine[J]. Journal of Propulsion Technology,2015,36(6):947-952.
    [11] 郑权,李宝星,翁春生,等. 燃烧室长度对液态燃料旋转爆轰发动机性能影响实验研究[J]. 推进技术,2018,39(12):2764-2771.

    ZHENG Q,LI B X,WENG C S,et al. Experimental investigation for effects of combustor length on liquid-fueled rotating detonation engine performance[J]. Journal of Propulsion Technology,2018,39(12):2764-2771.
    [12] PENG H Y,LIU W D,LIU S J,et al. The effect of cavity on ethylene-air Continuous Rotating Detonation in the annular combustor[J]. International Journal of Hydrogen Energy,2019,44(26):14032-14043. doi: 10.1016/j.ijhydene.2019.04.017
    [13] ZHOU S B,MA H,CHEN S H,et al. Experimental investigation on propagation characteristics of rotating detonation wave with a hydrogen-ethylene-acetylene fuel[J]. Acta Astronautica,2019,157:310-320. doi: 10.1016/j.actaastro.2019.01.009
    [14] ZHONG Y P,WU Y,JIN D,et al. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene[J]. Aerospace Science and Technology,2019,95:105480. doi: 10.1016/j.ast.2019.105480
    [15] 胡洪波,严宇,张锋,等. 煤油富燃燃气旋转爆震燃烧实验研究[J]. 推进技术,2020,41(4):881-888.

    HU H B,YAN Y,ZHANG F,et al. Experimental investigation on rotational detonation combustion with fuel-rich gases of kerosene[J]. Journal of Propulsion Technology,2020,41(4):881-888.
    [16] WALTERS I V, JOURNELL C, LEMCHERFI A I, et al. Performance characterization of a natural gas-air rotating detonation engine[C]//Proc of the AIAA Propulsion and Energy 2019 Forum. 2019: 4214. doi: 10.2514/6.2019-4214
    [17] BARATTA A, STOUT J B. Demonstrated low pressure loss inlet and low equivalence ratio operation of a rotating detonation engine(RDE) for power generation[C]//Proc of the AIAA Science and Technology Forum(SciTech 2020). 2020. doi: 10.2172/1817673
    [18] PRAKASH S, RAMAN V, LIETZ C, et al. High fidelity simulations of a methane-oxygen rotating detonation rocket engine[C]//Proc of the AIAA Scitech 2020 Forum. 2020: 0689. doi: 10.2514/6.2020-0689
    [19] LIU S J,PENG H Y,LIU W D,et al. Effects of cavity depth on the ethylene-air Continuous Rotating Detonation[J]. Acta Astronautica,2020,166:1-10. doi: 10.1016/j.actaastro.2019.09.038
    [20] PENG H Y,LIU W D,LIU S J,et al. Realization of methane-air continuous rotating detonation wave[J]. Acta Astronautica,2019,164:1-8. doi: 10.1016/j.actaastro.2019.07.001
    [21] 王宇辉,王超,郑榆山,等. 基于乙烯或氢气的吸气式旋转爆轰发动机实验[J]. 气体物理,2018,3(6):16-25.

    WANG Y H,WANG C,ZHENG Y S,et al. Experimental on air-breathing rotating detonation engine using ethylene or hydrogen[J]. Physics of Gases,2018,3(6):16-25.
  • 加载中
图(12) / 表(1)
计量
  • 文章访问数:  282
  • HTML全文浏览量:  57
  • PDF下载量:  44
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-08-09
  • 录用日期:  2021-11-12
  • 修回日期:  2021-10-20
  • 网络出版日期:  2022-05-10

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日