Direct connected experimental research on hydrocarbon-fueled rotating detonation
-
摘要: 以乙烯和常温煤油为燃料开展了旋转爆震直连试验,模拟飞行马赫数5.0,隔离段入口马赫数2.5,采用起爆管进行起爆。研究结果表明,乙烯当量比在0.43~0.99范围内,旋转爆震波均可稳定自持传播,传播频率为5.32~6.42 kHz,传播周期为0.157~0.188 ms。高频压力和壁面压力测量结果表明:旋转爆震波传播频率和燃烧室压力均随当量比增大而线性升高;爆震波高频压力平均峰值随当量比增大先升高后降低;隔离段出口压力随当量比增大逐渐升高,但隔离段入口气流始终未受影响,马赫数保持为2.5。常温煤油当量比为0.70时,也实现了旋转爆震波的稳定传播。Abstract: Direct connected tests of rotating detonation were performed with ethylene and room-temperature kerosene adopted as fuel. The corresponding flight Mach number is 5.0, and the Mach number is 2.5 at the isolator entrance. Results show that the rotating detonation wave was sustained after initiation with the equivalent ratio of ethylene ranging from 0.43 to 0.99. The propagation frequency of detonation waves is 5.32–6.42 kHz, with a propagation cycle of 0.156–0.188 ms. As the equivalent ratio increases, the propagation velocity of the detonation wave and the pressure in the detonation combustor increase almost linearly. While the averaged pressure peaks of the dynamic pressure(PCB pressure sensor) first increase and then decrease. The pressure at the isolator exit also increases under a higher equivalent ratio, but the velocity remains unchanged at Ma=2.5. When the equivalent ratio of kerosene was about 0.70, the rotating detonation wave was also sustained.
-
Key words:
- rotating detonation /
- ramjet /
- hydrocarbon fuel /
- isolator
-
表 1 试验工况
Table 1. Experiment condition
No. Ф $\overline f $/kHz Fuel 1# 0.43 5.32 C2H4 2# 0.51 5.61 C2H4 3# 0.64 5.98 C2H4 4# 0.72 6.07 C2H4 5# 0.87 6.11 C2H4 6# 0.92 6.42 C2H4 7# 0.99 6.36 C2H4 8# 0.70 3.97 Kerosene -
[1] BYKOVSKII F A,ZHDAN S A,VEDERNIKOV E F. Continuous spin detonations[J]. Journal of Propulsion and Power,2006,22(6):1204-1216. doi: 10.2514/1.17656 [2] WOLAŃSKI P. Detonative propulsion[J]. Proceedings of the Combustion Institute,2013,34:125-158. doi: 10.1016/j.proci.2012.10.005 [3] LU F K,BRAUN E M. Rotating detonation wave propul-sion: experimental challenges, modeling, and engine concepts[J]. Journal of Propulsion and Power,2014,30(5):1125-1142. doi: 10.2514/1.B34802 [4] BRAUN E M,LU F K,WILSON D R,et al. Airbreathing rotating detonation wave engine cycle analysis[J]. Aerospace Science and Technology,2013,27(1):201-208. doi: 10.1016/j.ast.2012.08.010 [5] 刘世杰, 王超, 蒋露欣, 等. 连续旋转爆震冲压发动机直连式试验[C]//第十六届全国激波与激波管学术会议论文. 2014. [6] WANG C,LIU W D,LIU S J,et al. Experimental verification of air-breathing continuous rotating detonation fueled by hydrogen[J]. International Journal of Hydrogen Energy,2015,40(30):9530-9538. doi: 10.1016/j.ijhydene.2015.05.060 [7] WANG C,LIU W D,LIU S J,et al. Experimental investigation on detonation combustion patterns of hydrogen/vitiated air within annular combustor[J]. Experimental Thermal and Fluid Science,2015,66:269-278. doi: 10.1016/j.expthermflusci.2015.02.024 [8] LIU S J, LIU W D, WANG Y, et al. Free jet test of continuous rotating detonation ramjet engine[C]//Proc of the 21st AIAA International Space Planes and Hypersonics Technologies Conference. 2017: 2282. doi: 10.2514/6.2017-2282 [9] 阎宝林, 张义宁, 宫继双, 等. 液态碳氢燃料连续旋转爆震燃烧实验研究[C]//第五届爆震与新型推进学术会议论文. 2017. [10] 郑权,翁春生,白桥栋. 当量比对液体燃料旋转爆轰发动机爆轰影响实验研究[J]. 推进技术,2015,36(6):947-952.ZHENG Q,WENG C S,BAI Q D. Experimental study on effects of equivalence ratio on detonation characteristics of liquid-fueled rotating detonation engine[J]. Journal of Propulsion Technology,2015,36(6):947-952. [11] 郑权,李宝星,翁春生,等. 燃烧室长度对液态燃料旋转爆轰发动机性能影响实验研究[J]. 推进技术,2018,39(12):2764-2771.ZHENG Q,LI B X,WENG C S,et al. Experimental investigation for effects of combustor length on liquid-fueled rotating detonation engine performance[J]. Journal of Propulsion Technology,2018,39(12):2764-2771. [12] PENG H Y,LIU W D,LIU S J,et al. The effect of cavity on ethylene-air Continuous Rotating Detonation in the annular combustor[J]. International Journal of Hydrogen Energy,2019,44(26):14032-14043. doi: 10.1016/j.ijhydene.2019.04.017 [13] ZHOU S B,MA H,CHEN S H,et al. Experimental investigation on propagation characteristics of rotating detonation wave with a hydrogen-ethylene-acetylene fuel[J]. Acta Astronautica,2019,157:310-320. doi: 10.1016/j.actaastro.2019.01.009 [14] ZHONG Y P,WU Y,JIN D,et al. Investigation of rotating detonation fueled by the pre-combustion cracked kerosene[J]. Aerospace Science and Technology,2019,95:105480. doi: 10.1016/j.ast.2019.105480 [15] 胡洪波,严宇,张锋,等. 煤油富燃燃气旋转爆震燃烧实验研究[J]. 推进技术,2020,41(4):881-888.HU H B,YAN Y,ZHANG F,et al. Experimental investigation on rotational detonation combustion with fuel-rich gases of kerosene[J]. Journal of Propulsion Technology,2020,41(4):881-888. [16] WALTERS I V, JOURNELL C, LEMCHERFI A I, et al. Performance characterization of a natural gas-air rotating detonation engine[C]//Proc of the AIAA Propulsion and Energy 2019 Forum. 2019: 4214. doi: 10.2514/6.2019-4214 [17] BARATTA A, STOUT J B. Demonstrated low pressure loss inlet and low equivalence ratio operation of a rotating detonation engine(RDE) for power generation[C]//Proc of the AIAA Science and Technology Forum(SciTech 2020). 2020. doi: 10.2172/1817673 [18] PRAKASH S, RAMAN V, LIETZ C, et al. High fidelity simulations of a methane-oxygen rotating detonation rocket engine[C]//Proc of the AIAA Scitech 2020 Forum. 2020: 0689. doi: 10.2514/6.2020-0689 [19] LIU S J,PENG H Y,LIU W D,et al. Effects of cavity depth on the ethylene-air Continuous Rotating Detonation[J]. Acta Astronautica,2020,166:1-10. doi: 10.1016/j.actaastro.2019.09.038 [20] PENG H Y,LIU W D,LIU S J,et al. Realization of methane-air continuous rotating detonation wave[J]. Acta Astronautica,2019,164:1-8. doi: 10.1016/j.actaastro.2019.07.001 [21] 王宇辉,王超,郑榆山,等. 基于乙烯或氢气的吸气式旋转爆轰发动机实验[J]. 气体物理,2018,3(6):16-25.WANG Y H,WANG C,ZHENG Y S,et al. Experimental on air-breathing rotating detonation engine using ethylene or hydrogen[J]. Physics of Gases,2018,3(6):16-25. -