留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于时空浓度梯度反演扁平微通道中平均流速的优化算法

吴斯达 陈柯洁 曾效 李泳江 覃开蓉

吴斯达,陈柯洁,曾 效,等. 基于时空浓度梯度反演扁平微通道中平均流速的优化算法[J]. 实验流体力学,2021,35(5):19-25 doi: 10.11729/syltlx20210075
引用本文: 吴斯达,陈柯洁,曾 效,等. 基于时空浓度梯度反演扁平微通道中平均流速的优化算法[J]. 实验流体力学,2021,35(5):19-25 doi: 10.11729/syltlx20210075
WU S D,CHEN K J,ZENG X,et al. An optimization algorithm for deriving the average flow velocity in a shallow microchannel through spatiotemporal concentration gradient[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):19-25. doi: 10.11729/syltlx20210075
Citation: WU S D,CHEN K J,ZENG X,et al. An optimization algorithm for deriving the average flow velocity in a shallow microchannel through spatiotemporal concentration gradient[J]. Journal of Experiments in Fluid Mechanics, 2021,35(5):19-25. doi: 10.11729/syltlx20210075

基于时空浓度梯度反演扁平微通道中平均流速的优化算法

doi: 10.11729/syltlx20210075
基金项目: 国家自然科学基金面上项目(31971243);科技部国家重点研发计划项目(2020YFC2004400);中央高校基本科研业务费项目(DUT20YG113,DUT21RC(3)044)
详细信息
    作者简介:

    吴斯达:(1996-),男,辽宁大连人,硕士研究生。研究方向:微流控技术。通信地址:辽宁省大连市甘井子区凌工路2号大连理工大学主校区研究生教育大楼光电工程与仪器科学学院(116024)。E-mail:wsd21942021@mail.dlut.edu.cn

    通讯作者:

    E-mail:yongjiangli@dlut.edu.cn;

    krqin@dlut.edu.cn

  • 中图分类号: TB937

An optimization algorithm for deriving the average flow velocity in a shallow microchannel through spatiotemporal concentration gradient

  • 摘要: 微流控通道内流速的准确测量在利用微流控芯片开展定量化学分析、样品制备、药物合成等领域具有重要应用价值。基于物质输运原理,提出了一种通过测量物质时空浓度梯度反演扁平微通道中平均流速的优化算法。首先,基于Navier-Stokes方程与Taylor-Aris弥散方程建立扁平微通道中速度场与浓度场的定量关系,分别提出了用直接反演法和优化算法求解平均流速的方法;其次,通过数值仿真系统地分析了时空浓度变化频率、振幅和扩散系数对反演流速准确度的影响;最后,通过荧光素实验验证了该方法的可行性。结果表明:无噪声情况下,优化算法反演结果与真实速度相关系数为1,具有很高的精度;有噪声情况下,增大物质浓度信号的频率与振幅、采用扩散系数较小的物质有助于提高算法的准确度;在微流控装置中,优化算法反演结果与流量传感器测量计算结果的相关系数为0.9814。
  • 图  1  扁平直通道示意图

    Figure  1.  Schematic of a straight shallow microchannel

    图  2  优化算法流程图

    Figure  2.  Flow chart for the optimization algorithm

    图  3  微通道内浓度分布仿真结果

    Figure  3.  Simulation results of the concentration distribution in the micro-channel

    图  4  直接反演法和优化算法求得平均流速与真实流速对比

    Figure  4.  Comparison between the real velocity and the average velocity derived based on the direct inversion method and the optimiza-tion algorithm

    图  5  浓度信号参数对优化算法反演平均流速的影响

    Figure  5.  Influence of parameters of the concentration signals on the average velocity derived by the optimization algorithm

    图  6  实验装置图

    Figure  6.  Experimental setup

    图  7  实验方法示意图

    Figure  7.  Schematic of experimental method

    图  8  实时荧光图像

    Figure  8.  Real-time fluorescent images

    图  9  优化算法与流量传感器测量计算结果对比

    Figure  9.  Comparison of the average velocity derived by the optimization algorithm and the experimental measurement by the flow sensor

  • [1] WOOTTON R C R,DEMELLO A J. Microfluidics: Exploiting ele-phants in the room[J]. Nature,2010,464(7290):839-840. doi: 10.1038/464839a
    [2] LUCCHETTA D E,VITA F,FRANCESCANGELI D,et al. Optical measurement of flow rate in a microfluidic channel[J]. Microfluidics and Nanofluidics,2016,20(1):9-13. doi: 10.1007/s10404-015-1690-1
    [3] PATERLINI-BRECHOT P,BENALI N L. Circulating tumor cells (CTC) detection: Clinical impact and future directions[J]. Cancer Letters,2007,253(2):180-204. doi: 10.1016/j.canlet.2006.12.014
    [4] LEI X,LIU B,WU H,et al. The effect of fluid shear stress on fibroblasts and stem cells on plane and groove topographies[J]. Cell Adhesion & Migration,2020,14(1):12-23. doi: 10.1080/19336918.2020.1713532
    [5] LI Y,QIN Z,ZHOU L,et al. Collective influence of substrate chemistry with physiological fluid shear stress on human umbilical vein endothelial cells[J]. Cell Biology International,2021:1926-1934. doi: 10.1002/cbin.11632
    [6] LIU Y O,KLAAS M,SCHRÖDER W. Measurements of the wall-shear stress distribution in turbulent channel flow using the micro-pillar shear stress sensor MPS3[J]. Experimental Thermal and Fluid Science,2019,106:171-182. doi: 10.1016/j.expthermflusci.2019.04.022
    [7] KOO H J,VELEV O D. Design and characterization of hydrogel-based microfluidic devices with biomimetic solute transport net-works[J]. Biomicrofluidics,2017,11(2):104-116. doi: 10.1063/1.4978617
    [8] SINTON D. Microscale flow visualization[J]. Microfluidics and Nanofluidics,2004,1(1):2-21. doi: 10.1007/s10404-004-0009-4
    [9] KOVALEV A V,YAGODNITSYNA A A,BILSKY A V. Micro-PTV technique application to velocity field measurements in immis-cible liquid-liquid plug flow in microchannels[J]. Journal of Physics: Conference Series,2019,1421:012026. doi: 10.1088/1742-6596/1421/1/012026
    [10] QURESHI M H,TIEN W H,LIN Y J P. Performance comparison of particle tracking velocimetry (PTV) and particle image velocimetry (PIV) with long-exposure particle streaks[J]. Measurement Science and Technology,2021,32(2):024008. doi: 10.1088/1361-6501/abb747
    [11] 黄湛. 标量图像测速原理及数值检验[J]. 实验流体力学,2009,23(2):87-93. doi: 10.3969/j.issn.1672-9897.2009.02.019

    HUANG Z. The theory and DNS testing of scalar image velocime-try[J]. Journal of Experiments in Fluid Mechanics,2009,23(2):87-93. doi: 10.3969/j.issn.1672-9897.2009.02.019
    [12] WERELEY S T,MEINHART C D. Recent advances in micro-particle image velocimetry[J]. Annual Review of Fluid Mechanics,2010,42(1):557-576. doi: 10.1146/annurev-fluid-121108-145427
    [13] TANG M,LIU F,LEI J,et al. Simple and convenient microfluidic flow rate measurement based on microbubble image velocimetry[J]. Microfluidics and Nanofluidics,2019,23(11):118-126. doi: 10.1007/s10404-019-2285-z
    [14] KIM C S,KIM W,LEE K,et al. High-speed color three-dimensional measurement based on parallel confocal detection with a focus tunable lens[J]. Optics Express,2019,27(20):28466-28479. doi: 10.1364/OE.27.028466
    [15] GILLISSEN J J,VILQUIN A,KELLAY H,et al. A space–time in-tegral minimisation method for the reconstruction of velocity fields from measured scalar fields[J]. Journal of Fluid Mechanics,2018,854:348-366. doi: 10.1017/jfm.2018.559
    [16] SHELBY J P,CHIU D T. Mapping fast flows over micrometer-length scales using flow-tagging velocimetry and single-molecule detec-tion[J]. Analytical Chemistry,2003,75(6):1387-1392. doi: 10.1021/ac026275+
    [17] MAYNES D,WEBB A R. Velocity profile characterization in sub-millimeter diameter tubes using molecular tagging velocimetry[J]. Experiments in Fluids,2002,32(1):3-15. doi: 10.1007/s003480200001
    [18] 覃开蓉,柳兆荣,徐刚. 具有切应力梯度的平行平板流动腔的构造[J]. 力学季刊,2001,22(3):281-288. doi: 10.3969/j.issn.0254-0053.2001.03.002

    QIN K R,LIU Z R,XU G. Construction of parallel-plate flow Chambers with shear stress gradients[J]. Chinese Quarterly of Mecha-nics,2001,22(3):281-288. doi: 10.3969/j.issn.0254-0053.2001.03.002
    [19] LI Y J,LI Y,CAO T,et al. Transport of dynamic biochemical signals in steady flow in a shallow Y-shaped microfluidic channel: effect of transverse diffusion and longitudinal dispersion[J]. Journal of Biome-chanical Engineering,2013,135(12):121011. doi: 10.1115/1.4025774
    [20] 徐刚,覃开蓉,柳兆荣. 平行平板流动腔脉动流切应力的计算[J]. 力学季刊,2000,21(1):45-51. doi: 10.15959/j.cnki.0254-0053.2000.01.009

    XU G,QIN K R,LIU Z R. Calculation of the shear stress in the parallel-plate flow chamber under pulsatile flow condition[J]. Chi-nese Quarterly of Mechanics,2000,21(1):45-51. doi: 10.15959/j.cnki.0254-0053.2000.01.009
  • 加载中
图(9)
计量
  • 文章访问数:  58
  • HTML全文浏览量:  21
  • PDF下载量:  15
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-17
  • 修回日期:  2021-08-06
  • 网络出版日期:  2021-11-11
  • 刊出日期:  2021-10-25

目录

    /

    返回文章
    返回

    重要公告

    www.syltlx.com是《实验流体力学》期刊唯一官方网站,其他皆为仿冒。请注意识别。

    《实验流体力学》期刊不收取任何费用。如有组织或个人以我刊名义向作者、读者收取费用,皆为假冒。

    相关真实信息均印刷于《实验流体力学》纸刊。如有任何疑问,请先行致电编辑部咨询并确认,以避免损失。编辑部电话0816-2463376,2463374,2463373。

    请广大读者、作者相互转告,广为宣传!

    感谢大家对《实验流体力学》的支持与厚爱,欢迎继续关注我刊!


    《实验流体力学》编辑部

    2021年8月13日